We present an acoustic detection technique to study the interaction of two shock waves emitted by two nearby, simultaneous, laser-induced air-breakdown events that resembles the phenomenon of interaction of fluids. A microphone is employed to detect the acoustic shock wave (ASW) from the interaction zone. The experiments were done at various separation distances between the two plasma sources. The incident laser energy of the sources is varied from 25 to 100 mJ in ratios from 1:1 to 1:4. The peak sound pressure of the ASW was compared between the single and dual plasma sources, showing that the pressures are higher for the dual plasma source than that of the single plasma. The evolution of peak sound pressures is observed to depend on (a) the pulse energy of the sources and (b) the plasma separation distance, d. For the equal energy sources, the peak sound pressures increased linearly up to a certain plasma separation distance d, beyond which the pressures saturated and decayed. For the case of unequal energy sources, the peak sound pressures showed an interesting response of increase, saturation, decay, and further increase with plasma separation distance d. These observations indicate the dynamics of acoustic wave interactions across the interaction zone of the two sources depend on the input laser pulse energy as well as the plasma separation distance d.

1.
Al-Shboul
,
K. F.
,
Harilal
,
S. S.
,
Hassan
,
S. M.
,
Hassanein
,
A.
,
Costello
,
J. T.
,
Yabuuchi
,
T.
,
Tanaka
,
K. A.
, and
Hirooka
,
Y.
(
2014
). “
Interpenetration and stagnation in colliding laser plasmas
,”
Phys. Plasmas
21
,
013502
.
2.
Bende
,
T.
, and
Jean
,
B. J.
(
2004
). “
Non-contact photoacoustic spectroscopy for photoablation control
,” U.S. patent 6694173B1.
3.
Bittencourt
,
J. A.
(
2004
).
Fundamentals of Plasma Physics
(
Springer
,
New York
).
4.
Bosch
,
R. A.
,
Berger
,
R. L.
,
Failor
,
B. H.
,
Delamater
,
N. D.
,
Charatis
,
G.
, and
Kauffman
,
R. L.
(
1992
). “
Collision and interpenetration of plasmas created by laser‐illuminated disks
,”
Phys. Fluids B Plasma Phys.
4
,
979
988
.
5.
Chelikani
,
L.
,
Pinnoju
,
V.
,
Verma
,
P.
,
Singh
,
R. V.
, and
Kiran
,
P. P.
(
2017
). “
Dynamic response of laser ablative shock waves from coated and uncoated amorphous boron nanoparticles
,”
AIP Conf. Proc.
1793
,
120024
.
6.
Chen
,
X.
,
Cheng
,
L.
,
Guo
,
D.
,
Kostov
,
Y.
, and
Choa
,
F.-S.
(
2011
). “
Quantum cascade laser based standoff photoacoustic chemical detection
,”
Opt. Express
19
,
20251
20257
.
7.
Chide
,
B.
,
Maurice
,
S.
,
Cousin
,
A.
,
Bousquet
,
B.
,
Mimoun
,
D.
,
Beyssac
,
O.
,
Meslin
,
P.-Y.
, and
Wiens
,
R. C.
(
2020
). “
Recording laser-induced sparks on Mars with the SuperCam microphone
,”
Spectrochim. Acta Part B At. Spectrosc.
174
,
106000
.
8.
Chide
,
B.
,
Maurice
,
S.
,
Murdoch
,
N.
,
Lasue
,
J.
,
Bousquet
,
B.
,
Jacob
,
X.
,
Cousin
,
A.
,
Forni
,
O.
,
Gasnault
,
O.
,
Meslin
,
P.-Y.
,
Fronton
,
J.-F.
,
Bassas-Portús
,
M.
,
Cadu
,
A.
,
Sournac
,
A.
,
Mimoun
,
D.
, and
Wiens
,
R. C.
(
2019
). “
Listening to laser sparks: A link between laser-induced breakdown spectroscopy, acoustic measurements and crater morphology
,”
Spectrochim. Acta Part B At. Spectrosc.
153
,
50
60
.
9.
Dardis
,
J.
, and
Costello
,
J. T.
(
2010
). “
Stagnation layers at the collision front between two laser-induced plasmas: A study using time-resolved imaging and spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
65
,
627
635
.
10.
Deaton
,
J. B.
,
Azad
,
F. H.
,
Azer
,
M. N.
, and
Rockstroh
,
T. J.
(
2011
). “
Laser shock peening system with time-of-flight monitoring
,” U.S. patent US20070119824A1.
11.
Dehoux
,
T.
,
Ghanem
,
M. A.
,
Zouani
,
O. F.
,
Rampnoux
,
J. M.
,
Guillet
,
Y.
,
Dilhaire
,
S.
,
Durrieu
,
M. C.
, and
Audoin
,
B.
(
2015
). “
All-optical broadband ultrasonography of single cells
,”
Sci. Rep.
5
,
8650
.
12.
Diwakar
,
P. K.
,
Harilal
,
S. S.
,
Freeman
,
J. R.
, and
Hassanein
,
A.
(
2013
). “
Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
87
,
65
73
.
13.
Dogas
,
D.
,
Efthimiopoulos
,
T.
,
Andreouli
,
C.
, and
Campbell
,
M.
(
2001
). “
Acoustic wave monitoring of the excimer laser ablation of YBCO high-Tc superconductor
,”
Appl. Phys. A
73
,
287
294
.
14.
Fallon
,
C.
(
2013
). “
Optical diagnostics of colliding laser produced plasmas: Towards next generation plasma light sources
,” Ph.D. thesis,
Dublin City University
,
Dublin, Ireland
.
15.
Ghanem
,
M. A.
,
Dehoux
,
T.
,
Liu
,
L.
,
Saux
,
G. L.
,
Plawinski
,
L.
,
Durrieu
,
M.-C.
, and
Audoin
,
B.
(
2018
). “
Opto-acoustic microscopy reveals adhesion mechanics of single cells
,”
Rev. Sci. Instrum.
89
,
014901
.
16.
Gómez Bolaños
,
J.
,
Pulkki
,
V.
,
Karppinen
,
P.
, and
Haeggström
,
E.
(
2013
). “
An optoacoustic point source for acoustic scale model measurements
,”
J. Acoust. Soc. Am.
133
,
EL221
EL227
.
17.
Gupta
,
S. L.
,
Pandey
,
P. K.
, and
Thareja
,
R. K.
(
2013
). “
Dynamics of laser ablated colliding plumes
,”
Phys. Plasmas
20
,
013511
.
18.
Guthikonda
,
N.
,
Manikanta
,
E.
,
Chelikani
,
L.
,
Shiva
,
S. S.
,
Harsha
,
S. S.
,
Ikkurthi
,
V. R.
, and
Kiran
,
P. P.
(
2020
). “
Interaction of two counterpropagating laser induced plasmas and shock waves in air
,”
Phys. Plasmas
27
,
023107
.
19.
Guthikonda
,
N.
,
Shiva
,
S. S.
,
Manikanta
,
E.
,
Kameswari
,
D. P. S. L.
,
Ikkurthi
,
V. R.
,
Sijoy
,
C. D.
, and
Kiran
,
P. P.
(
2021
). “
Effect of focusing plane on laser blow-off shock waves from confined aluminum and copper foils
,”
J. Phys. D: Appl. Phys.
55
,
115202
.
20.
Harilal
,
S. S.
,
Polek
,
M. P.
, and
Hassanein
,
A.
(
2011
). “
Jetlike emission from colliding laser-produced plasmas
,”
IEEE Trans. Plasma Sci.
39
,
2780
2781
.
21.
Hosoya
,
N.
,
Nagata
,
M.
, and
Kajiwara
,
I.
(
2013
). “
Acoustic testing in a very small space based on a point sound source generated by laser-induced breakdown: Stabilization of plasma formation
,”
J. Sound Vib.
332
,
4572
4583
.
22.
Irissou
,
E.
,
Vidal
,
F.
,
Johnston
,
T.
,
Chaker
,
M.
,
Guay
,
D.
, and
Ryabinin
,
A. N.
(
2006
). “
Influence of an inert background gas on bimetallic cross-beam pulsed laser deposition
,”
J. Appl. Phys.
99
,
034904
.
23.
Kaleris
,
K.
,
Orfanos
,
Y.
,
Bakarezos
,
M.
,
Papadogiannis
,
N.
, and
Mourjopoulos
,
J.
(
2019
). “
Experimental and analytical evaluation of the acoustic radiation of femtosecond laser plasma filament sound sources in air
,”
J. Acoust. Soc. Am.
146
,
EL212
EL218
.
24.
Kameswari
,
D. P. S. L.
,
Guthikonda
,
N.
,
Shiva
,
S. S.
,
Manikanta
,
E.
,
Harsha
,
S. S.
,
Ikkurthi
,
V. R.
, and
Kiran
,
P. P.
(
2021
). “
Investigation of stagnation layer dynamics of counterpropagating laser induced air plasmas: Numerical simulations vis-à-vis experimental observations
,”
Phys. Plasmas
28
,
043104
.
25.
Larson
,
G. D.
,
Martin
,
J. S.
, and
Scott
,
W. R.
, Jr.
(
2007
). “
Investigation of microphones as near-ground sensors for seismic detection of buried landmines
,”
J. Acoust. Soc. Am.
122
,
253
258
.
26.
Leela
,
C.
,
Bagchi
,
S.
,
Kumar
,
V. R.
,
Tewari
,
S. P.
, and
Kiran
,
P. P.
(
2013
). “
Dynamics of laser induced micro-shock waves and hot core plasma in quiescent air
,”
Laser Part. Beams
31
,
263
272
.
27.
Manikanta
,
E.
(
2018
). “
Acoustic shock wave emissions from laser induced breakdown of materials
,” Ph.D. thesis,
University of Hyderabad
,
Hyderabad, India
.
28.
Manikanta
,
E.
,
Vinoth Kumar
,
L.
,
Leela
,
C.
, and
Prem Kiran
,
P.
(
2017
). “
Effect of laser intensity on temporal and spectral features of laser generated acoustic shock waves: ns versus ps laser pulses
,”
Appl. Opt.
56
,
6902
6910
.
29.
Manikanta
,
E.
,
Vinoth Kumar
,
L.
,
Venkateshwarlu
,
P.
,
Leela
,
C.
, and
Kiran
,
P. P.
(
2016
). “
Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air
,”
Appl. Opt.
55
,
548
555
.
30.
Mulser
,
P.
,
Sigel
,
R.
, and
Witkowski
,
S.
(
1973
). “
Plasma production by laser
,”
Phys. Rep.
6
,
187
239
.
31.
Nalam
,
S. A.
,
Manikanta
,
E.
,
Srikanthaiah
,
S. H.
, and
Kiran
,
P. P.
(
2019
). “
Acoustic measurements on femtosecond laser induced filaments
,” in
Proceedings of the International Conference on Optics and Electro-Optics (ICOL-2019)
, October 19–22,
Dehradun, India
.
32.
Pandiyan
,
V.
,
Drissi-Daoudi
,
R.
,
Shevchik
,
S.
,
Masinelli
,
G.
,
Le-Quang
,
T.
,
Logé
,
R.
, and
Wasmer
,
K.
(
2021
). “
Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions
,”
Virtual Phys. Prototyp.
16
,
481
497
.
33.
Qin
,
Q.
, and
Attenborough
,
K.
(
2004
). “
Characteristics and application of laser-generated acoustic shock waves in air
,”
Appl. Acoust.
65
,
325
340
.
34.
Rambo
,
P. W.
, and
Denavit
,
J.
(
1994
). “
Interpenetration and ion separation in colliding plasmas
,”
Phys. Plasmas
1
,
4050
4060
.
35.
Rambo
,
P. W.
, and
Procassini
,
R. J.
(
1995
). “
A comparison of kinetic and multifluid simulations of laser‐produced colliding plasmas
,”
Phys. Plasmas
2
,
3130
3145
.
36.
Shevchik
,
S. A.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
(
2018
). “
Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks
,”
Addit. Manuf.
21
,
598
604
.
37.
Shiva
,
S. S.
,
Leela
,
C.
,
Kiran
,
P. P.
,
Sijoy
,
C. D.
,
Ikkurthi
,
V. R.
, and
Chaturvedi
,
S.
(
2017
). “
Numerical investigation of nanosecond laser induced plasma and shock wave dynamics from air using 2D hydrodynamic code
,”
Phys. Plasmas
24
,
083110
.
38.
Shiva
,
S. S.
,
Leela
,
C.
,
Kiran
,
P. P.
,
Sijoy
,
C. D.
,
Ikkurthi
,
V. R.
, and
Chaturvedi
,
S.
(
2019
). “
Role of laser absorption and equation-of-state models on ns laser induced ablative plasma and shockwave dynamics in ambient air: Numerical and experimental investigations
,”
Phys. Plasmas
26
,
072108
.
39.
Tański
,
M.
,
Barbucha
,
R.
,
Kocik
,
M.
,
Garasz
,
K.
, and
Mizeraczyk
,
J.
(
2013
). “
Investigation of the laser generated ablation plasma plume dynamics and plasma plume sound wave dynamics
,”
Proc. SPIE Int. Soc. Opt. Eng.
8703
,
870300
.
40.
Tselev
,
A.
,
Gorbunov
,
A.
, and
Pompe
,
W.
(
2001
). “
Cross-beam pulsed laser deposition: General characteristic
,”
Rev. Sci. Instrum.
72
,
2665
2672
.
41.
van den Heuvel
,
J.
,
Klein
,
V.
,
Lutzmann
,
P.
,
van Putten
,
F.
,
Hebel
,
M.
, and
Schleijpen
,
H.
(
2003
). “
Sound wave and laser excitation for acousto-optical landmine detection
,”
Proc. SPIE Int. Soc. Opt. Eng.
5089
,
569
578
.
42.
Vinoth Kumar
,
L.
,
Manikanta
,
E.
,
Leela
,
C.
, and
Kiran
,
P. P.
(
2014
). “
Spectral selective radio frequency emissions from laser induced breakdown of target materials
,”
Appl. Phys. Lett.
105
,
064102
.
43.
Vinoth Kumar
,
L.
,
Manikanta
,
E.
,
Leela
,
C.
, and
Kiran
,
P. P.
(
2016
). “
Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air
,”
J. Appl. Phys.
119
,
214904
.
44.
Yu
,
J.
,
Mondelain
,
D.
,
Kasparian
,
J.
,
Salmon
,
E.
,
Geffroy
,
S.
,
Favre
,
C.
,
Boutou
,
V.
, and
Wolf
,
J.-P.
(
2003
). “
Sonographic probing of laser filaments in air
,”
Appl. Opt.
42
,
7117
7120
.
45.
Yuan
,
D.
,
Li
,
Y.
,
Liu
,
M.
,
Zhong
,
J.
,
Zhu
,
B.
,
Li
,
Y.
,
Wei
,
H.
,
Han
,
B.
,
Pei
,
X.
,
Zhao
,
J.
,
Li
,
F.
,
Zhang
,
Z.
,
Liang
,
G.
,
Wang
,
F.
,
Weng
,
S.
,
Li
,
Y.
,
Jiang
,
S.
,
Du
,
K.
,
Ding
,
Y.
,
Zhu
,
B.
,
Zhu
,
J.
,
Zhao
,
G.
, and
Zhang
,
J.
(
2017
). “
Formation and evolution of a pair of collisionless shocks in counter-streaming flows
,”
Sci. Rep.
7
,
42915
.
You do not currently have access to this content.