This study uses the singular perturbation method to analyze the streaming flow around a pulsating bubble at the velocity antinode of a standing wave. The bubble radially and laterally oscillates with small nondimensional amplitudes of ε` and ε, respectively. The momentum equation is expanded using ε. The frequency parameter M, which is the ratio of the bubble radius to the viscous length, is included in the expanded equations as OM1. Four boundary conditions are solved: non-pulsating and pulsating assuming no-slip and shear-free boundaries. For the non-pulsating bubble, the streaming is on the order of OM1 for the shear-free boundary. The flow has a quadrupole pattern, with direction from the equator to the poles. However, for the non-pulsating bubble with the no-slip boundary, the flow pattern is from the poles to the equator and the direction reverses after a critical value of M=13.3. When bubble pulsation is introduced, the intensity of the streaming increases and is proportional to M. The flow pattern is dipole with a direction from the south to the north pole for the shear-free boundary. For the non-slip boundary, the flow is quadrupole for small values of M and varies with the phase shift ϕ. As M increases, the flow intensifies and becomes dipole. For both cases, the maximum velocity is at the phase shift angle ϕ=135° and M=10.

1.
A.
Hashmi
,
G.
Yu
,
M.
Reilly-Collette
,
G.
Heiman
, and
J.
Xu
, “
Oscillating bubbles: A versatile tool for lab on a chip applications
,”
Lab Chip
12
,
4216
4227
(
2012
).
2.
C.
Wang
,
S. V.
Jalikop
, and
S.
Hilgenfeldt
, “
Efficient manipulation of microparticles in bubble streaming flows
,”
Biomicrofluidics
6
,
012801
(
2012
).
3.
Y.
Xie
,
C.
Chindam
,
N.
Nama
,
S.
Yang
,
M.
Lu
,
Y.
Zhao
,
J. D.
Mai
,
F.
Costanzo
, and
T. J.
Huang
, “
Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device
,”
Sci. Rep.
5
,
12572
(
2015
).
4.
Y.
Li
,
X.
Liu
,
Q.
Huang
,
A. T.
Ohta
, and
T.
Arai
, “
Bubbles in microfluidics: An all-purpose tool for micromanipulation
,”
Lab Chip
21
,
1016
1035
(
2021
).
5.
S.
Orbay
,
A.
Ozcelik
,
J.
Lata
,
M.
Kaynak
,
M.
Wu
, and
T. J.
Huang
, “
Mixing high-viscosity fluids via acoustically driven bubbles
,”
J. Micromech. Microeng.
27
,
015008
(
2016
).
6.
I.
Lentacker
,
S. C.
de Smedt
, and
N. N.
Sanders
, “
Drug loaded microbubble design for ultrasound triggered delivery
,”
Soft Matter
5
,
2161
2170
(
2009
).
7.
W. G.
Pitt
,
G. A.
Husseini
, and
B. J.
Staples
, “
Ultrasonic drug delivery–A general review
,”
Expert Opin. Drug Deliv.
1
,
37
56
(
2004
).
8.
G.
Lajoinie
,
I.
De Cock
,
C. C.
Coussios
,
I.
Lentacker
,
S.
Le Gac
,
E.
Stride
, and
M.
Versluis
, “
In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications
,”
Biomicrofluidics
10
,
011501
(
2016
).
9.
I.
Akhatov
,
N.
Gumerov
,
C. D.
Ohl
,
U.
Parlitz
, and
W.
Lauterborn
, “
The role of surface tension in stable single-bubble sonoluminescence
,”
Phys. Rev. Lett.
78
,
227
230
(
1997
).
10.
E. A.
Neppiras
, “
Acoustic cavitation
,”
Phys. Rep.
61
,
159
251
(
1980
).
11.
L. A.
Crum
, “
Acoustic cavitation
,” in
1982 Ultrasonics Symposium
, San Diego, CA, pp.
1
11
.
12.
F. R.
Young
,
Cavitation
(
Imperial College Press
,
London
,
1999
).
13.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
).
14.
T. G.
Leighton
,
A. J.
Walton
, and
M. J. W.
Pickworth
, “
Primary Bjerknes forces
,”
Eur. J. Phys.
11
,
47
50
(
1990
).
15.
T. J.
Matula
, “
Bubble levitation and translation under single-bubble sonoluminescence conditions
,”
J. Acoust. Soc. Am.
114
,
775
781
(
2003
).
16.
W.
Cui
,
W.
Chen
,
S.
Qi
,
C.
Zhou
, and
J.
Tu
, “
Radial and translational oscillations of an acoustically levitated bubble in aqueous ethanol solutions
,”
J. Acoust. Soc. Am.
132
,
138
143
(
2012
).
17.
N.
Riley
, “
Steady streaming
,”
Annu. Rev. Fluid. Mech.
33
,
43
65
(
2001
).
18.
S. S.
Sadhal
, “
Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods
,”
Lab Chip
12
,
2292
2300
(
2012
).
19.
N.
Riley
, “
On a sphere oscillating in a viscous fluid
,”
Q. J. Mech. Appl. Math.
19
(
4
), Pages
461
472
(
1966
).
20.
M. S.
Longuet-Higgins
, “
Viscous streaming from an oscillating spherical bubble
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
454
,
725
742
(
1998
).
21.
H.
Zhao
,
S. S.
Sadhal
, and
E. H.
Trinh
, “
Singular perturbation analysis of an acoustically levitated sphere: Flow about the velocity node
,”
J. Acoust. Soc. Am.
106
,
589
595
(
1999
).
22.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
New York
,
1995
).
23.
R. S.
Johnson
,
Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering
(
Springer US
,
New York
,
2010
).
You do not currently have access to this content.