Dispersion curves of elastic waveguides exhibit points where the group velocity vanishes while the wavenumber remains finite. These are the so-called zero-group-velocity (ZGV) points. As the elastodynamic energy at these points remains confined close to the source, they are of practical interest for nondestructive testing and quantitative characterization of structures. These applications rely on the correct prediction of the ZGV points. In this contribution, we first model the ZGV resonances in anisotropic plates based on the appearance of an additional modal solution. The resulting governing equation is interpreted as a two-parameter eigenvalue problem. Subsequently, we present three complementary numerical procedures capable of computing ZGV points in arbitrary nondissipative elastic waveguides in the conventional sense that their axial power flux vanishes. The first method is globally convergent and guarantees to find all ZGV points but can only be used for small problems. The second procedure is a very fast, generally-applicable, Newton-type iteration that is locally convergent and requires initial guesses. The third method combines both kinds of approaches and yields a procedure that is applicable to large problems, does not require initial guesses and is likely to find all ZGV points. The algorithms are implemented in GEW ZGV computation (doi: 10.5281/zenodo.7537442).

1.
B. A.
Auld
,
Acoustic Fields and Waves in Solids 2
, 2nd ed. (
Krieger Publishing Company
,
Malabar
,
1990
), Vol. 2.
2.
D.
Royer
and
T.
Valier-Brasier
,
Elastic Waves in Solids 1: Propagation
(
ISTE and John Wiley & Sons
,
New York
,
2022
).
3.
J. L.
Tassoulas
and
T. R.
Akylas
, “
On wave modes with zero group velocity in an elastic layer
,”
J. Appl. Mech.
51
(
3
),
652
656
(
1984
).
4.
C.
Prada
,
O.
Balogun
, and
T. W.
Murray
, “
Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates
,”
Appl. Phys. Lett.
87
(
19
),
194109
(
2005
).
5.
C.
Prada
,
D.
Clorennec
, and
D.
Royer
, “
Local vibration of an elastic plate and zero-group velocity Lamb modes
,”
J. Acoust. Soc. Am.
124
(
1
),
203
212
(
2008
).
6.
S. D.
Holland
and
D. E.
Chimenti
, “
Air-coupled acoustic imaging with zero-group-velocity Lamb modes
,”
Appl. Phys. Lett.
83
(
13
),
2704
2706
(
2003
).
7.
M.
Cès
,
D.
Clorennec
,
D.
Royer
, and
C.
Prada
, “
Thin layer thickness measurements by zero group velocity Lamb mode resonances
,”
Rev. Sci. Instrum.
82
(
11
),
114902
(
2011
).
8.
O.
Baggens
and
N.
Ryden
, “
Systematic errors in Impact-Echo thickness estimation due to near field effects
,”
NDT&E Int.
69
,
16
27
(
2015
).
9.
C.
Grünsteidl
,
T. W.
Murray
,
T.
Berer
, and
I. A.
Veres
, “
Inverse characterization of plates using zero group velocity Lamb modes
,”
Ultrasonics
65
,
1
4
(
2016
).
10.
D.
Clorennec
,
C.
Prada
, and
D.
Royer
, “
Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes
,”
J. Appl. Phys.
101
(
3
),
034908
(
2007
).
11.
M.
Cès
,
D.
Royer
, and
C.
Prada
, “
Characterization of mechanical properties of a hollow cylinder with zero group velocity Lamb modes
,”
J. Acoust. Soc. Am.
132
(
1
),
180
185
(
2012
).
12.
C.
Prada
,
D.
Clorennec
,
T. W.
Murray
, and
D.
Royer
, “
Influence of the anisotropy on zero-group velocity Lamb modes
,”
J. Acoust. Soc. Am.
126
(
2
),
620
625
(
2009
).
13.
C.
Grünsteidl
,
T.
Berer
,
M.
Hettich
, and
I.
Veres
, “
Determination of thickness and bulk sound velocities of isotropic plates using zero-group-velocity Lamb waves
,”
Appl. Phys. Lett.
112
(
25
),
251905
(
2018
).
14.
G.
Watzl
,
C.
Kerschbaummayr
,
M.
Schagerl
,
T.
Mitter
,
B.
Sonderegger
, and
C.
Grünsteidl
, “
In situ laser-ultrasonic monitoring of Poisson's ratio and bulk sound velocities of steel plates during thermal processes
,”
Acta Mater.
235
,
118097
(
2022
).
15.
S.
Mezil
,
J.
Laurent
,
D.
Royer
, and
C.
Prada
, “
Non contact probing of interfacial stiffnesses between two plates by zero-group velocity Lamb modes
,”
Appl. Phys. Lett.
105
(
2
),
021605
(
2014
).
16.
S.
Mezil
,
F.
Bruno
,
S.
Raetz
,
J.
Laurent
,
D.
Royer
, and
C.
Prada
, “
Investigation of interfacial stiffnesses of a tri-layer using Zero-Group Velocity Lamb modes
,”
J. Acoust. Soc. Am.
138
(
5
),
3202
3209
(
2015
).
17.
J. J.
Valenza
II, “
Characterizing bulk liquids with zero-group-velocity Lamb modes
,”
Meas. Sci. Technol.
32
(
10
),
105302
(
2021
).
18.
M.
Thelen
,
N.
Bochud
,
M.
Brinker
,
C.
Prada
, and
P.
Huber
, “
Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon
,”
Nat. Commun.
12
(
1
),
3597
(
2021
).
19.
E.
Kausel
, “
Number and location of zero-group-velocity modes
,”
J. Acoust. Soc. Am.
131
(
5
),
3601
3610
(
2012
).
20.
A. L.
Shuvalov
and
O.
Poncelet
, “
On the backward Lamb waves near thickness resonances in anisotropic plates
,”
Int. J. Solids Struct.
45
(
11
),
3430
3448
(
2008
).
21.
T.
Hussain
and
F.
Ahmad
, “
Lamb modes with multiple zero-group velocity points in an orthotropic plate
,”
J. Acoust. Soc. Am.
132
(
2
),
641
645
(
2012
).
22.
S.
Karous
,
S.
Dahmen
,
M. S.
Bouhdima
,
M. B.
Amor
, and
C.
Glorieux
, “
Multiple zero group velocity Lamb modes in an anisotropic plate: Propagation along different crystallographic axes
,”
Can. J. Phys.
97
(
10
),
1064
1074
(
2019
).
23.
F. H.
Quintanilla
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
Modeling guided elastic waves in generally anisotropic media using a spectral collocation method
,”
J. Acoust. Soc. Am.
137
(
3
),
1180
1194
(
2015
).
24.
A. A.
Maznev
and
A. G.
Every
, “
Surface acoustic waves with negative group velocity in a thin film structure on silicon
,”
Appl. Phys. Lett.
95
(
1
),
011903
(
2009
).
25.
E. V.
Glushkov
and
N. V.
Glushkova
, “
Multiple zero-group velocity resonances in elastic layered structures
,”
J. Sound Vib.
500
,
116023
(
2021
).
26.
H.
Cui
,
W.
Lin
,
H.
Zhang
,
X.
Wang
, and
J.
Trevelyan
, “
Backward waves with double zero-group-velocity points in a liquid-filled pipe
,”
J. Acoust. Soc. Am.
139
(
3
),
1179
1194
(
2016
).
27.
H.
Gravenkamp
,
C.
Song
, and
J.
Prager
, “
A numerical approach for the computation of dispersion relations for plate structures using the scaled boundary finite element method
,”
J. Sound Vib.
331
,
2543
2557
(
2012
).
28.
H.
Gravenkamp
,
H.
Man
,
C.
Song
, and
J.
Prager
, “
The computation of dispersion relations for three-dimensional elastic waveguides using the Scaled Boundary Finite Element Method
,”
J. Sound Vib.
332
,
3756
3771
(
2013
).
29.
K.-J.
Langenberg
,
R.
Marklein
, and
K.
Mayer
,
Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations
, 1st ed. (
CRC Press
,
Boca Raton, FL
,
2012
) (translated from German).
30.
D. A.
Kiefer
, “
Elastodynamic quasi-guided waves for transit-time ultrasonic flow metering
,”
FAU Forschungen, Reihe B, Medizin, Naturwissenschaft, Technik, No. 42
(
FAU University Press
,
Erlangen, Germany
,
2022
).
31.
D. A.
Kiefer
, “
GEW dispersion script [computer software]
,” https://github.com/dakiefer/GEW_dispersion_script,
Zenodo
, Dataset .
32.
The isotropic 4th-order stiffness tensor is c=λII+μ(II1342+II1324). The super-indices describe a permutation applied to the tensor II, i.e., the original dimensions 1234 are re-ordered as described.
33.
R. D.
Mindlin
, “
Vibrations of an infinite elastic plate at its cutoff frequencies
,” in
Proceedings of the Third US National Congress of Applied Mechanics
,
Providence, RI
(
June 11–14
,
1958
), pp.
225
226
.
34.
V.
Pagneux
and
A.
Maurel
, “
Lamb wave propagation in elastic waveguides with variable thickness
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
462
(
2068
),
1315
1339
(
2006
).
35.
D. A.
Kiefer
,
A.
Benkert
, and
S. J.
Rupitsch
, “
Transit time of Lamb wave-based ultrasonic Flow meters and the effect of temperature
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
69
(
10
),
2975
2983
(
2022
).
36.
F. V.
Atkinson
and
A. B.
Mingarelli
,
Multiparameter Eigenvalue Problems: Sturm-Liouville Theory
(
CRC Press
,
Boca Raton, FL
,
2010
).
37.
B.
Plestenjak
,
C. I.
Gheorghiu
, and
M. E.
Hochstenbach
, “
Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems
,”
J. Comput. Phys.
298
,
585
601
(
2015
).
38.
A.
Muhič
and
B.
Plestenjak
, “
On the singular two-parameter eigenvalue problem
,”
Electron. J. Linear Algebra
18
,
420
437
(
2009
).
39.
M. E.
Hochstenbach
,
C.
Mehl
, and
B.
Plestenjak
, “
Solving singular generalized eigenvalue problems by a rank-completing perturbation
,”
SIAM J. Matrix Anal. Appl.
40
(
3
),
1022
1046
(
2019
).
40.
Note that we switch from describing physical tensor fields to a more abstract finite-dimensional vector space. Correspondingly, we also switch from tensor notation (bold) to matrix/vector notation (uppercase/lowercase, respectively).
41.
H.
Gravenkamp
, “
Efficient simulation of elastic guided waves interacting with notches, adhesive joints, delaminations and inclined edges in plate structures
,”
Ultrasonics
82
,
101
113
(
2018
).
42.
S.
Finnveden
, “
Evaluation of modal density and group velocity by a finite element method
,”
J. Sound Vib.
273
(
1
),
51
75
(
2004
).
43.
D. A.
Kiefer
,
M.
Ponschab
,
S. J.
Rupitsch
, and
M.
Mayle
, “
Calculating the full leaky Lamb wave spectrum with exact fluid interaction
,”
J. Acoust. Soc. Am.
145
(
6
),
3341
3350
(
2019
).
44.
A.
Fichtner
, “
Full seismic waveform modelling and inversion
,” in
Advances in Geophysical and Environmental Mechanics and Mathematics
(
Springer
,
Berlin
,
2010
).
45.
H.
Gravenkamp
,
A. A.
Saputra
, and
S.
Duczek
, “
High-order shape functions in the scaled boundary finite element method revisited
,”
Arch. Comput. Methods Eng.
28
(
2
),
473
494
(
2021
).
46.
M. E.
Hochstenbach
,
A.
Muhič
, and
B.
Plestenjak
, “
On linearizations of the quadratic two-parameter eigenvalue problem
,”
Linear Algebra Appl.
436
(
8
),
2725
2743
(
2012
).
47.
F.
Tisseur
and
K.
Meerbergen
, “
The quadratic eigenvalue problem
,”
SIAM Rev.
43
(
2
),
235
286
(
2001
).
48.
The Kronecker product AB of the m × n-matrix A=[Aij] with the p × q-matrix B yields the block matrix [AijB] of size mp×nq. For three matrices, ABC=(AB)C=A(BC). Vectors are treated like matrices with one column. The operator determinants are computed analogously to determinants of matrices applying the Kronecker product instead of multiplication of scalar matrix entries. For example, Δ0=L1M̃C2+ML̃2C1ML̃1C2L2M̃C1.
49.
M. E.
Hochstenbach
,
C.
Mehl
, and
B.
Plestenjak
, “
Solving singular generalized eigenvalue problems. Part II: Projection and augmentation
,” arXiv:2208.01359 (
2022
).
50.
B.
Plestenjak
, “MultiParEig,” https://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig (Last viewed January 14, 2023).
51.
T.
Lu
and
Y.
Su
, “
A Newton-type method for two-dimensional eigenvalue problems
,”
Numer. Linear Algebra Appl.
29
(
4
),
e2430
(
2022
).
52.
E.
Jarlebring
,
S.
Kvaal
, and
W.
Michiels
, “
Computing all pairs (λ,μ) such that λ is a double eigenvalue of A + μB
,”
SIAM J. Matrix Anal. Appl.
32
(
3
),
902
927
(
2011
).
53.
A.
Muhič
and
B.
Plestenjak
, “
A method for computing all values λ such that A + λB has a multiple eigenvalue
,”
Linear Algebra Appl.
440
,
345
359
(
2014
).
54.
B.
Plestenjak
and
D. A.
Kiefer
, “
GEW ZGV computation [computer software]
,” https://github.com/dakiefer/GEW_ZGV_computation,
Zenodo
, Dataset .
55.
F.
Uhlig
, “
Coalescing eigenvalues and crossing eigencurves of 1-parameter matrix flows
,”
SIAM J. Matrix Anal. Appl.
41
(
4
),
1528
1545
(
2020
).
56.
F. V.
Atkinson
,
Multiparameter Eigenvalue Problems
(
Academic Press
,
New York
,
1972
).
57.
D. S.
Tracy
and
K. G.
Jinadasa
, “
Partitioned Kronecker products of matrices and applications
,”
Can. J. Stat.
17
(
1
),
107
120
(
1989
).
58.
P.
Lanceleur
,
H.
Ribeiro
, and
J.
De Belleval
, “
The use of inhomogeneous waves in the reflection-transmission problem at a plane interface between two anisotropic media
,”
J. Acoust. Soc. Am.
93
(
4
),
1882
1892
(
1993
).
You do not currently have access to this content.