Synthetic vocal fold (VF) replicas were used to explore the role of nodule size and stiffness on kinematic, aerodynamic, and acoustic measures of voiced speech production. Emphasis was placed on determining how changes in collision pressure may contribute to the development of phonotrauma. This was performed by adding spherical beads with different sizes and moduli of elasticity at the middle of the medial surface of synthetic silicone VF models, representing nodules of varying size and stiffness. The VF models were incorporated into a hemilaryngeal flow facility. For each case, self-sustained oscillations were investigated at the phonation threshold pressure. It was found that increasing the nodule diameter increased the open quotient, phonation threshold pressure, and phonation threshold flow rate. However, these values did not change considerably as a function of the modulus of elasticity of the nodule. Nevertheless, the ratio of collision pressure to subglottal pressure increased significantly for both increasing nodule size and stiffness. This suggests that over time, both growth in size and fibrosis of nodules will lead to an increasing cycle of compensatory vocal hyperfunction that accelerates phonotrauma.

1.
F. G.
Dikkers
and
P. G.
Nikkels
, “
Benign lesions of the vocal folds: Histopathology and phonotrauma
,”
Ann. Otol. Rhinol. Laryngol.
104
(
9
),
698
703
(
1995
).
2.
M.
Lee
,
T.
Mau
, and
L.
Sulica
, “
Patterns of recurrence of phonotraumatic vocal fold lesions suggest distinct mechanisms of injury
,”
Laryngoscope
131
,
2523
2529
(
2021
).
3.
D.
de Vasconcelos
,
A. O. C.
Gomes
, and
C. M. T.
de Araújo
, “
Vocal fold polyps: Literature review
,”
Int. Arch. Otorhinolaryngol.
23
(
1
),
116
124
(
2019
).
4.
G. E.
Galindo
,
S. D.
Peterson
,
B. D.
Erath
,
C.
Castro
,
R. E.
Hillman
, and
M.
Zañartu
, “
Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds
,”
J. Speech Lang. Hear. Res.
60
(
9
),
2452
2471
(
2017
).
5.
R. E.
Hillman
,
E. B.
Holmberg
,
J. S.
Perkell
,
M.
Walsh
, and
C.
Vaughan
, “
Objective assessment of vocal hyperfunction: An experimental framework and initial results
,”
J. Speech Hear. Res.
32
,
373
392
(
1989
).
6.
R. E.
Hillman
,
C. E.
Stepp
,
J. H.
Van Stan
,
M.
Zañartu
, and
D. D.
Mehta
, “
An updated theoretical framework for vocal hyperfunction
,”
Am. J. Speech Lang. Pathol.
29
(
4
),
2254
2260
(
2020
).
7.
E. B.
Holmberg
,
R. E.
Hillman
,
B.
Hammarberg
,
M.
Södersten
, and
P.
Doyle
, “
Efficacy of a behaviorally based voice therapy protocol for vocal nodules
,”
J. Voice
15
(
3
),
395
412
(
2001
).
8.
J.
Kuo
,
E. B.
Holmberg
, and
R. E.
Hillman
, “
Discriminating speakers with vocal nodules using aerodynamic and acoustic features
,” in
Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP99) (Cat. No.99CH36258)
,
Phoenix, AZ
(March 15–19,
1999
), pp.
77
80
.
9.
C. E.
Stepp
,
R. E.
Hillman
, and
J. T.
Heaton
, “
A virtual trajectory model predicts differences in vocal fold kinematics in individuals with vocal hyperfunction
,”
J. Acoust. Soc. Am.
127
(
5
),
3166
3176
(
2010
).
10.
E. E.
Levendoski
,
C.
Leydon
, and
S. L.
Thibeault
, “
Vocal fold epithelial barrier in health and injury: A research review
,”
J. Speech Lang. Hear. Res.
57
(
5
),
1679
1691
(
2014
).
11.
B.
Rousseau
,
A.
Suehiro
,
N.
Echemendia
, and
M.
Sivasankar
, “
Raised intensity phonation compromises vocal fold epithelial barrier integrity
,”
Laryngoscope
121
(
2
),
346
351
(
2011
).
12.
I. R.
Titze
, “
Mechanical stress in phonation
,”
J. Voice
8
(
2
),
99
105
(
1994
).
13.
S.
Gray
and
I.
Titze
, “
Histologic investigation of hyperphonated canine vocal cords
,”
Ann. Otol. Rhinol. Laryngol.
97
,
381
388
(
1988
).
14.
R.
Zhao
,
Y.
Cai
, and
H.
Wang
, “
Pathological changes of hyperphonated cat vocal folds
,”
Auris Nasus Larynx
18
(
1
),
55
59
(
1991
).
15.
M. M.
Johns
, “
Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts
,”
Curr. Opin. Otolaryngol. Head Neck Surg.
11
,
456
461
(
2003
).
16.
R. C.
Branski
,
K.
Verdolini
,
V.
Sandulache
,
C. A.
Rosen
, and
P. A.
Hebda
, “
Vocal fold wound healing: A review for clinicians
,”
J. Voice
20
(
3
),
432
442
(
2006
).
17.
R.
Mittal
,
B. D.
Erath
, and
M. W.
Plesniak
, “
Fluid dynamics of human phonation and speech
,”
Annu. Rev. Fluid Mech.
45
,
437
467
(
2013
).
18.
M. S.
Courey
,
M. A.
Scott
,
J. A.
Shohet
, and
R. H.
Ossoff
, “
Immunohistochemical characterization of benign laryngeal lesions
,”
Ann. Otol. Rhinol. Laryngol.
105
(
7
),
525
531
(
1996
).
19.
F. G.
Dikkers
and
P. G.
Nikkels
, “
Lamina propria of the mucosa of benign lesions of the vocal folds
,”
Laryngoscope
109
(
10
),
1684
1689
(
1999
).
20.
S. D.
Gray
,
E.
Hammond
, and
D. F.
Hanson
, “
Benign pathologic responses of the larynx
,”
Ann. Otol. Rhinol. Laryngol.
104
(
1
),
13
18
(
1995
).
21.
S.
Hirano
,
D. M.
Bless
,
B.
Rousseau
,
N.
Welham
,
T.
Scheidt
, and
C. N.
Ford
, “
Fibronectin and adhesion molecules on canine scarred vocal folds
,”
Laryngoscope
113
,
966
972
(
2003
).
22.
R.
Greiss
,
J.
Rocha
, and
E.
Matida
, “
Modal analysis of a parameterized model of pathological vocal fold vibration
,” in
Proceedings of the 2016 IEEE EMBS International Student Conference (ISC)
,
Ottawa, Canada
(May 29–31,
2016
).
23.
P. H.
Dejonckere
and
M.
Kob
, “
Pathogenesis of vocal fold nodules: New insights from a modelling approach
,”
Folia Phoniatr. Logop.
61
(
3
),
171
179
(
2009
).
24.
L.
Wallis
,
C.
Jackson-Menaldi
,
W.
Holland
, and
A.
Giraldo
, “
Vocal fold nodule vs. vocal fold polyp: Answer from surgical pathologist and voice pathologist point of view
,”
J. Voice
18
,
125
129
(
2004
).
25.
I. R.
Titze
, “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
(
4
),
1536
1552
(
1988
).
26.
J.
Jiang
,
T.
O'Mara
,
D.
Conley
, and
D.
Hanson
, “
Phonation threshold pressure measurements during phonation by airflow interruption
,”
Laryngoscope
109
,
425
432
(
1999
).
27.
S.
Deguchi
and
Y.
Kawahara
, “
Simulation of human phonation with vocal nodules
,”
Am. J. Comput. Math.
1
(
3
),
189
201
(
2011
).
28.
P.
Zhuang
,
A. J.
Sprecher
,
M. R.
Hoffman
,
Y.
Zhang
,
M.
Fourakis
,
J. J.
Jiang
, and
C. S.
Wei
, “
Phonation threshold flow measurements in normal and pathological phonation
,”
Laryngoscope
119
(
4
),
811
815
(
2009
).
29.
B. D.
Erath
and
M. W.
Plesniak
, “
Three-dimensional laryngeal flow fields induced by a model vocal fold polyp
,”
Int. J. Heat Fluid Flow
35
,
93
101
(
2012
).
30.
L. R.
Ranjbar
, “
Experimental and computational study of intraglottal pressure distributions for vocal polyps
,” Ph.D. thesis,
University of Toledo
,
Toledo, OH
,
2018
.
31.
A.
Yamauchi
,
H.
Yokonishi
,
H.
Imagawa
,
K.
Sakakibara
,
T.
Nito
,
N.
Tayama
, and
T.
Yamasoba
, “
Quantification of vocal fold vibration in various laryngeal disorders using high-speed digital imaging
,”
J. Voice
30
(
2
),
205
214
(
2016
).
32.
Y.
Zhang
and
J. J.
Jiang
, “
Chaotic vibrations of a vocal fold model with a unilateral polyp
,”
J. Acoust. Soc. Am.
115
(
3
),
1266
1269
(
2004
).
33.
Y.
Zhang
and
J. J.
Jiang
, “
Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx
,”
Chaos Interdiscip. J. Nonlinear Sci.
18
(
4
),
043102
(
2008
).
34.
J. K.
Kutty
and
K.
Webb
, “
Tissue engineering therapies for the vocal fold lamina propria
,”
Tissue Eng. Part B Rev.
15
(
3
),
249
262
(
2009
).
35.
I. R.
Titze
,
Principles of Voice Production
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1994
).
36.
M.
Civera
,
C.
Filosi
,
N.
Pugno
,
M.
Silvestrini
,
C.
Surace
, and
K.
Worden
, “
Assessment of vocal cord nodules: A case study in speech processing by using Hilbert-Huang transform
,”
J. Phys. Conf. Ser.
842
,
012025
(
2017
).
37.
H. E.
Gunter
,
R. D.
Howe
,
S. M.
Zeitels
,
J. B.
Kobler
, and
R. E.
Hillman
, “
Measurement of vocal fold collision forces during phonation
,”
J. Speech Lang. Hear. Res.
48
(
3
),
576
576
(
2005
).
38.
M. M.
Hess
,
K.
Verdolini
,
W.
Bierhals
,
U.
Mansmann
, and
M.
Gross
, “
Endolaryngeal contact pressures
,”
J. Voice
12
,
50
67
(
1998
).
39.
D. D.
Mehta
,
J. B.
Kobler
,
S. M.
Zeitels
,
M.
Zañartu
,
E. J.
Ibarra
,
G. A.
Alzamendi
,
R.
Manriquez
,
B. D.
Erath
,
S. D.
Peterson
,
R. H.
Petrillo
, and
Hillman
,
R. E.
, “
Direct measurement and modeling of intraglottal, subglottal, and vocal fold collision pressures during phonation in an individual with a hemilaryngectomy
,”
Appl. Sci.
11
(
16
),
7256
(
2021
).
40.
K.
Verdolini
,
M. M.
Hess
,
I. R.
Titze
,
W.
Bierhals
, and
M.
Gross
, “
Investigation of vocal fold impact stress in human subjects
,”
J. Voice
13
(
2
),
184
202
(
1999
).
41.
D. D.
Mehta
,
J. B.
Kobler
,
S. M.
Zeitels
,
M.
Zañartu
,
B. D.
Erath
,
M.
Motie-Shirazi
,
S. D.
Peterson
,
R. H.
Petrillo
, and
R. E.
Hillman
, “
Toward development of a vocal fold contact pressure probe: Bench-top validation of a dual-sensor probe using excised human larynx models
,”
Appl. Sci.
9
(
20
),
4360
(
2019
).
42.
M. E.
Díaz-Cádiz
,
S. D.
Peterson
,
G. E.
Galindo
,
V. M.
Espinoza
,
M.
Motie-Shirazi
,
B. D.
Erath
, and
M.
Zañartu
, “
Estimating vocal fold contact pressure from raw laryngeal high-speed videoendoscopy using a hertz contact model
,”
Appl. Sci.
9
(
11
),
2384
(
2019
).
43.
H.
Gunter
, “
Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions
,”
J. Biomech.
37
,
1119
1124
(
2004
).
44.
J. J.
Jiang
,
C. E.
Diaz
, and
D. G.
Hanson
, “
Finite element modeling of vocal fold vibration in normal phonation and hyperfunctional dysphonia: Implications for the pathogenesis of vocal nodules
,”
Ann. Otol. Rhinol. Laryngol.
107
,
603
610
(
1998
).
45.
O.
Guasch
,
A.
Van Hirtum
,
A. I.
Fernández
, and
M.
Arnela
, “
Controlling chaotic oscillations in a symmetric two-mass model of the vocal folds
,”
Chaos Solitons Fractals
159
,
112188
(
2022
).
46.
R. N.
Rauma
, “
The effect of simulated nodules on vocal fold movement in a two layer synthetic model
,” Master's thesis,
Brigham Young University-Provo
,
Provo, UT
,
2009
.
47.
P.
Luizard
and
X.
Pelorson
, “
Threshold of oscillation of a vocal fold replica with unilateral surface growths
,”
J. Acoust. Soc. Am.
141
(
5
),
3050
3058
(
2017
).
48.
A.
Conte
,
M.
Maselli
,
A.
Nacci
,
M.
Manti
,
J.
Galli
,
G.
Paludetti
,
F.
Ursino
,
C.
Laschi
, and
M.
Cianchetti
, “
Conductive silicone vocal folds reproducing electroglottographic signal in pathophysiological conditions
,”
IEEE Trans. Med. Rob. Bionics
3
,
337
348
(
2021
).
49.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
,
D. D.
Mehta
,
J. B.
Kobler
,
R. E.
Hillman
, and
B. D.
Erath
, “
Toward development of a vocal fold contact pressure probe: Sensor characterization and validation using synthetic vocal fold models
,”
Appl. Sci.
9
(
15
),
3002
(
2019
).
50.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
, and
B. D.
Erath
, “
Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy
,”
J. Acoust. Soc. Am.
150
(
2
),
1332
1345
(
2021
).
51.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
, and
B. D.
Erath
, “
Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose
,”
J. Acoust. Soc. Am.
150
(
1
),
478
489
(
2021
).
52.
P. R.
Murray
and
S. L.
Thomson
, “
Synthetic, multi-layer, self-oscillating vocal fold model fabrication
,”
J. Vis. Exp.
58
,
e3498
(
2011
).
53.
B. A.
Pickup
and
S. L.
Thomson
, “
Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models
,”
J. Biomech.
42
,
2219
2225
(
2009
).
54.
C. L.
Jones
,
A.
Achuthan
, and
B. D.
Erath
, “
Modal response of a computational vocal fold model with a substrate layer of adipose tissue
,”
J. Acoust. Soc. Am.
137
(
2
),
EL158
EL164
(
2015
).
55.
M.
Motie-Shirazi
,
M.
Zañartu
,
S. D.
Peterson
,
D. D.
Mehta
,
R. E.
Hillman
, and
B. D.
Erath
, “
Collision pressure and dissipated power dose in a self-oscillating silicone vocal fold model with a posterior glottal opening
,”
J. Speech Lang. Hear. Res.
65
(
8
),
2829
2845
(
2022
).
56.
K.
Comley
and
N.
Fleck
, “
The compressive response of porcine adipose tissue from low to high strain rate
,”
Int. J. Impact Eng.
46
,
1
10
(
2012
).
57.
Y. B.
Min
,
I. R.
Titze
, and
F.
Alipour-Haghighi
, “
Stress-strain response of the human vocal ligament
,”
Ann. Otol. Rhinol. Laryngol.
104
(
7
),
563
569
(
1995
).
58.
D. K.
Chhetri
,
Z.
Zhang
, and
J.
Neubauer
, “
Measurement of Young's modulus of vocal folds by indentation
,”
J. Voice
25
,
1
7
(
2011
).
59.
G. R.
Dion
,
P. G.
Coelho
,
S.
Teng
,
M. N.
Janal
,
M. R.
Amin
, and
R. C.
Branski
, “
Dynamic nanomechanical analysis of the vocal fold structure in excised larynges
,”
Laryngoscope
127
(
7
),
E225
E230
(
2017
).
60.
F.
Alipour
and
S.
Vigmostad
, “
Measurement of vocal folds elastic properties for continuum modeling
,”
J. Voice
26
(
6
),
816.E21
816.E29
(
2012
).
61.
R. W.
Chan
and
I. R.
Titze
, “
Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results
,”
J. Acoust. Soc. Am.
106
,
2008
2021
(
1999
).
62.
R. W.
Chan
,
M.
Fu
,
L.
Young
, and
N.
Tirunagari
, “
Relative contributions of collagen and elastin to elasticity of the vocal fold under tension
,”
Ann. Biomed. Eng.
35
(
8
),
1471
1483
(
2007
).
63.
R. W.
Chan
and
M. L.
Rodriguez
, “
A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies
,”
J. Acoust. Soc. Am.
124
(
2
),
1207
1219
(
2008
).
64.
L.
Oren
,
D.
Dembinski
,
E.
Gutmark
, and
S.
Khosla
, “
Characterization of the vocal fold vertical stiffness in a canine model
,”
J. Voice
28
(
3
),
297
304
(
2014
).
65.
P.
Shrimpton
, “
Electron density values of various human tissues: In vitro compton scatter measurements and calculated ranges
,”
Phys. Med. Biol.
26
(
5
),
907
911
(
1981
).
66.
W.
Bolch
,
K.
Eckerman
,
A.
Endo
,
J.
Hunt
,
D.
Jokisch
,
C.
Kim
,
K.
Kim
,
C.
Lee
,
J.
Li
,
N.
Petoussi-Henss
,
T.
Sato
,
H.
Schlattl
,
Y. S.
Yeom
, and
M.
Zankl
, “
ICRP publication 143: Paediatric reference computational phantoms
,”
Ann. ICRP
49
(
1
),
5
297
(
2020
).
67.
A. H.
Mendelsohn
and
Z.
Zhang
, “
Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
5
),
2961
2968
(
2011
).
68.
See supplementary materials at https://www.scitation.org/doi/suppl/10.1121/10.0016997 for high-speed video of VF oscillations with nodules of different size and stiffness.
69.
V. M.
Espinoza
,
M.
Zañartu
,
J. H.
Van Stan
,
D. D.
Mehta
, and
R. E.
Hillman
, “
Glottal aerodynamic measures in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
60
,
2159
2169
(
2017
).
70.
V. M.
Espinoza
,
D. D.
Mehta
,
J. H.
Van Stan
,
R. E.
Hillman
, and
M.
Zañartu
, “
Glottal aerodynamics estimated from neck-surface vibration in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
63
(
9
),
2861
2869
(
2020
).
71.
R. J.
Baken
and
R. F.
Orlikoff
,
Clinical Measurement of Speech and Voice
, 2nd ed. (
Singular Thomson Learning
,
San Diego, CA
,
2000
).
72.
J. J.
Jiang
and
I. R.
Titze
, “
Measurement of vocal fold intraglottal pressure and impact stress
,”
J. Voice
8
,
132
144
(
1994
).
73.
P. R.
Murray
and
S. L.
Thomson
, “
Vibratory responses of synthetic, self-oscillating vocal fold models
,”
J. Acoust. Soc. Am.
132
(
5
),
3428
3438
(
2012
).
74.
Z.
Zhang
, “
Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics
,”
J. Acoust. Soc. Am.
127
(
4
),
2554
2562
(
2010
).
75.
M.
Doellinger
and
D. A.
Berry
, “
Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation
,”
J. Voice
20
(
3
),
401
413
(
2006
).
76.
I. R.
Titze
and
F.
Alipour
,
The Myoelastic Aerodynamic Theory of Phonation
(
National Center for Voice and Speech
,
Salt Lake City, UT
,
2006
).
77.
R. E.
Kania
,
S.
Hans
,
D. M.
Hartl
,
P.
Clement
,
L.
Crevier-Buchman
, and
D. F.
Brasnu
, “
Variability of electroglottographic glottal closed quotients: Necessity of standardization to obtain normative values
,”
Arch. Otolaryngol. Head Neck Surg.
130
(
3
),
349
352
(
2004
).
78.
J.
Lohscheller
,
J. G.
Švec
, and
M.
Döllinger
, “
Vocal fold vibration amplitude, open quotient, speed quotient and their variability along glottal length: Kymographic data from normal subjects
,”
Logoped. Phoniatr. Vocol.
38
,
182
192
(
2013
).
79.
R. C.
Scherer
,
S.
Torkaman
,
B. R.
Kucinschi
, and
A. A.
Afjeh
, “
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape
,”
J. Acoust. Soc. Am.
128
(
2
),
828
838
(
2010
).
80.
B.
Schneider
and
W.
Bigenzahn
, “
Influence of glottal closure configuration on vocal efficacy in young normal-speaking women
,”
J. Voice
17
(
4
),
468
480
(
2003
).
81.
D. Y.
Kim
,
L. S.
Kim
,
K. H.
Kim
,
M. W.
Sung
,
J. L.
Roh
,
T. K.
Kwon
,
S. J.
Lee
,
S. H.
Choi
,
S. G.
Wang
, and
M. Y.
Sung
, “
Videostrobokymographic analysis of benign vocal fold lesions
,”
Acta Otolaryngol.
123
(
9
),
1102
1109
(
2003
).
82.
V.
Birk
,
S.
Kniesburges
,
M.
Semmler
,
D. A.
Berry
,
C.
Bohr
,
M.
Döllinger
, and
A.
Schützenberger
, “
Influence of glottal closure on the phonatory process in ex vivo porcine larynges
,”
J. Acoust. Soc. Am.
142
(
4
),
2197
2207
(
2017
).
83.
S.
Falk
,
S.
Kniesburges
,
S.
Schoder
,
B.
Jakubaß
,
P.
Maurerlehner
,
M.
Echternach
,
M.
Kaltenbacher
, and
M.
Döllinger
, “
3D-FV-FE aeroacoustic larynx model for investigation of functional based voice disorders
,”
Front. Physiol.
12
,
616985
(
2021
).
84.
F. G.
Dikkers
, “
Benign lesions of the vocal folds: Clinical and histopathological aspects
,” Ph.D. thesis,
University of Groningen
,
Groningen, Netherlands
,
1994
.

Supplementary Material

You do not currently have access to this content.