The use of the angular spectrum method (ASM) to simulate the reflection of airborne ultrasound beams from a thin membrane separating air from a mixture of air and another gas is examined. The main advantage of this method is its high computing speed and efficiency for practical design calculations, suitable for sensing applications. The implemented ASM code is validated against custom Rayleigh integral code in a pure propagation simulation. In addition, ultrasound beam reflection calculations using ASM with finite element numerical results and experimental measurements are compared, finding good agreement in both cases. Then, ASM is used to estimate the sensitivity of specular reflection signals to variations in the composition of the incidence medium as a function of the angle of incidence. Conditions for which a reflection signal using inexpensive commercial ultrasound emitter/receiver at 40 kHz, in a simple configuration, offer a high enough sensitivity suitable for monitoring air quality indoors are found.

1.
World Health Organization
,
WHO Guidelines for Indoor Air Quality: Selected Pollutants
(
World Health Organization, Regional Office for Europe
,
Copenhagen, Denmark
,
2010
).
2.
T.
Yasuda
,
S.
Yonemura
, and
A.
Tani
, “
Comparison of the characteristics of small commercial NDIR CO2 sensor models and development of a portable CO2 measurement device
,”
Sensors
12
(
3
),
3641
3655
(
2012
).
3.
N.
Yamazoe
, “
Toward innovations of gas sensor technology
,”
Sens. Actuators B: Chem.
108
(
1-2
),
2
14
(
2005
).
4.
A.
Kumar
and
R.
Prajesh
, “
The potential of acoustic wave devices for gas sensing applications
,”
Sens. Actuators A: Phys.
339
,
113498
(
2022
).
5.
L.
Zipser
,
F.
Wächter
, and
H.
Franke
, “
Acoustic gas sensors using airborne sound properties
,”
Sens. Actuators B: Chem.
68
(
1-3
),
162
167
(
2000
).
6.
B.
Hök
,
A.
Blückert
, and
J.
Löfving
, “
Acoustic gas sensor with ppm resolution
,”
Sensor Rev.
20
,
139
(
2000
).
7.
M.
Verweij
,
B.
Treeby
,
K.
Van Dongen
, and
L.
Demi
, “
Simulation of ultrasound fields
,”
Comp. Biomed. Phys.
2
,
465
499
(
2014
).
8.
R.
Márquez-Islas
,
A.
Pérez-Pacheco
,
L. B.
Salazar-Nieva
,
A.
Acevedo-Barrera
,
E.
Mendoza-García
, and
A.
García-Valenzuela
, “
Optical device and methodology for optical sensing of hemolysis in hypotonic media
,”
Meas. Sci. Technol.
31
(
9
),
095701
(
2020
).
9.
A.
García-Valenzuela
,
M.
Peña-Gomar
, and
C.
Fajardo-Lira
, “
Measuring and sensing a complex refractive index by laser reflection near the critical angle
,”
Opt. Eng.
41
(
7
),
1704
1716
(
2002
).
10.
M. C.
Peña-Gomar
and
A.
García-Valenzuela
, “
Reflectivity of a Gaussian beam near the critical angle with external optically absorbing media
,”
Appl. Opt.
39
(
28
),
5131
5137
(
2000
).
11.
J.
Villatoro
and
A.
García-Valenzuela
, “
Measuring optical power transmission near the critical angle for sensing beam deflection
,”
Appl. Opt.
37
(
28
),
6648
6653
(
1998
).
12.
P. S.
Huang
,
S.
Kiyono
, and
O.
Kamada
, “
Angle measurement based on the internal-reflection effect: A new method
,”
Appl. Opt.
31
(
28
),
6047
6055
(
1992
).
13.
T.
Kohno
,
N.
Ozawa
,
K.
Miyamoto
, and
T.
Musha
, “
High precision optical surface sensor
,”
Appl. Opt.
27
(
1
),
103
108
(
1988
).
14.
M. D.
Shaw
and
B. E.
Anderson
, “
On the measurement of airborne, angular-dependent sound transmission through supercritical bars
,”
J. Acoust. Soc. Am.
132
(
4
),
EL257
EL263
(
2012
).
15.
J. R.
Dickens
,
D. A.
Bender
, and
D. E.
Bray
, “
A critical-angle ultrasonic technique for the inspection of wood parallel-to-grain
,”
Wood Fiber Sci.
28
(
3
),
380
388
(
1996
).
16.
S.
Mehta
and
P.
Antich
, “
Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)
,”
Ultrasound Med. Biol.
23
(
7
),
1123
1126
(
1997
).
17.
G.
Fitzpatrick
and
B.
Hildebrand
, “
Near surface flaw detection by ultrasonic critical angle imaging
,”
J. Nondestr. Eval.
3
(
4
),
201
220
(
1982
).
18.
L. L.
Thompson
, “
A review of finite-element methods for time-harmonic acoustics
,”
J. Acoust. Soc. Am.
119
(
3
),
1315
1330
(
2006
).
19.
J. T.
Katsikadelis
,
Boundary Elements: Theory and Applications
(
Elsevier
,
Amsterdam
,
2002
).
20.
S.
Kirkup
, “
The boundary element method in acoustics: A survey
,”
Appl. Sci.
9
(
8
),
1642
(
2019
).
21.
D. T.
Blackstock
,
Fundamentals of Physical Acoustics
(
Wiley
,
New York
,
2001
).
22.
H.-h.
Son
and
K.
Oh
, “
Light propagation analysis using a translated plane angular spectrum method with the oblique plane wave incidence
,”
J. Opt. Soc. Am. A
32
(
5
),
949
954
(
2015
).
23.
E.
Huggins
, “
Introduction to Fourier optics
,”
Phys. Teach.
45
(
6
),
364
368
(
2007
).
24.
A.
García-Valenzuela
and
R.
Diaz-Uribe
, “
Detection limits of an internal-reflection sensor for the optical beam deflection method
,”
Appl. Opt.
36
(
19
),
4456
4462
(
1997
).
25.
A.
Ortega-Aguilar
,
R.
Velasco-Segura
,
A.
García-Valenzuela
, and
G. E.
Sandoval-Romero
, “
Numerical simulation of ultrasound oblique reflection in a 2D gas-gas interface
,”
Proc. Mtgs. Acoust.
42
,
022003
(
2020
).
26.
D. P.
Orofino
and
P. C.
Pedersen
, “
Efficient angular spectrum decomposition of acoustic sources. I. Theory
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
(
3
),
238
249
(
1993
).
27.
R.
Velasco-Segura
and
C. U.
Martínez-Lule
, “
A Helmholtz equation implementation for finite element method based on Fenics project
,”
J. Acoust. Soc. Am.
150
(
4
),
A92
(
2021
).
28.
M. S.
Alnaes
,
J.
Blechta
,
J.
Hake
,
A.
Johansson
,
B.
Kehlet
,
A.
Logg
,
C.
Richardson
,
J.
Ring
,
M. E.
Rognes
, and
G. N.
Wells
, “
The fenics project version 2017.2.0
,”
Arch. Numer. Softw.
3
(
100
),
9
23
(
2015
).
29.
J. O.
Rangel-Flores
, “
Estudio numérico de régimen de baja frecuencia en medición de absorción en cámara reverberante, aplicado al problema de ruido urbano en viviendas
” (“Numerical study of low frequency regime in measurement of absorption in reverberant chamber, applied to the problem of urban noise in houses”), Bachelors dissertation,
Facultad de Ingeniería Universidad Nacional Autónoma de México
(
2019
), https://repositorio.unam.mx/contenidos/3511773 (Last viewed September 10, 2022).
30.
O. A.
Bustamante
,
E.
Romero-Vivas
, and
R.
Velasco-Segura
, “
Numerical study of an acoustic leaky wave antenna
,”
J. Acoust. Soc. Am.
148
(
4
),
2777
(
2020
).
31.
R.
Prill
, “
Why measure carbon dioxide inside buildings
,” Washington State University Extension Energy Program WSUEEP07 No. 3 (
2000
).
32.
T.
Löfqvist
,
J.
Delsing
, and
K.
Sokas
, “
Speed of sound measurements in gas-mixtures at varying composition using an ultrasonic gas flow meter with silicon based transducers
,” in
International Conference on Flow Measurement
(May 12–14,
2003
).
33.
ASTM Committee D-22 on Sampling and Analysis of Atmospheres, Subcommittee D22. 05 on Indoor Air
,
D6245 Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation
(
ASTM
,
West Conshohocken, PA
,
2018
).
You do not currently have access to this content.