A terrain capable parabolic equation (PE) propagation algorithm for long range infrasound propagation modeling has been implemented using Padé approximations for the various operator valued functions that arise in PE algorithms. In this work, the influence of the winds are captured by the effective sound speed approximation and propagation is restricted to the range-altitude plane. The ground topography is included by the addition of an impenetrable fluid below the ground surface. The impedance condition at the ground is handled explicitly, including both vertical and radial components. It is found that including terrain can have a large influence on long range propagation. In particular, reflections from a sufficiently steep slope can change the inclination angle enough to move the propagation path from one atmospheric duct to another.

1.
Arrowsmith
,
S. J.
,
Drob
,
D. P.
,
Hedlin
,
M. A.
, and
Edwards
,
W.
(
2007
). “
A joint seismic and acoustic study of the Washington state bolide: Observations and modeling
,”
J. Geophys. Res.
112
(
D9
),
D09304
, .
2.
Assink
,
J.
,
Waxler
,
R.
, and
Velea
,
D.
(
2017
). “
A wide-angle high Mach number modal expansion for infrasound propagation
,”
J. Acoust. Soc. Am.
141
(
3
),
1781
1792
.
3.
Attenborough
,
K.
, and
Van Renterghem
,
T.
(
2021
).
Predicting Outdoor Sound
(
CRC Press
,
Boca Raton, FL
).
4.
Bedard
,
A.
, and
Georges
,
T.
(
2000
). “
Atmospheric infrasound
,”
Phys. Today
53
(
3
),
32
37
.
5.
Bird
,
E.
,
Lees
,
J.
,
Kero
,
J.
, and
Bowman
,
D.
(
2022
). “
Topographically scattered infrasound waves observed on microbarometer arrays in the lower stratosphere
,”
Earth Space Sci.
9
(
4
),
e2022EA002226
.
6.
Blom
,
P.
(
2014
). “
Infraga/geoac
,” https://github.com/LANL-Seismoacoustics/infraGA (Last viewed December 12, 2022).
7.
Blom
,
P.
(
2020
). “
The influence of irregular terrain on infrasonic propagation in the troposphere
,”
J. Acoust. Soc. Am.
148
(
4
),
1984
1997
.
8.
Blom
,
P.
, and
Waxler
,
R.
(
2021
). “
Characteristics of thermospheric infrasound predicted using ray tracing and weakly non-linear waveform analyses
,”
J. Acoust. Soc. Am.
149
(
5
),
3174
3188
.
9.
Collins
,
M. D.
(
1992
). “
A self-starter for the parabolic equation method
,”
J. Acoust. Soc. Am.
92
(
4
),
2069
2074
.
10.
Collins
,
M. D.
(
1999
). “
The stabilized self-starter
,”
J. Acoust. Soc. Am.
106
(
4
),
1724
1726
.
11.
Collins
,
M. D.
, and
Siegmann
,
W. L.
(
2019
).
Parabolic Wave Equations with Applications
(
Springer
,
New York
).
12.
Godin
,
O.
(
2002
). “
An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid
,”
J. Acoust. Soc. Am.
112
,
1269
1275
.
13.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2000
).
Computational Ocean Acoustics
(
Springer
,
New York
).
14.
Khodr
,
C.
,
Azarpeyvand
,
M.
, and
Green
,
D. N.
(
2020
). “
An iterative three-dimensional parabolic equation solver for propagation above irregular boundaries
,”
J. Acoust. Soc. Am.
148
(
2
),
1089
1100
.
15.
Lee
,
D.
, and
McDaniel
,
S. T.
(
1983a
). “
A finite-difference treatment of interface conditions for the parabolic wave equation: The irregular interface
,”
J. Acoust. Soc. Am.
73
(
5
),
1441
1447
.
16.
Lee
,
D.
, and
McDaniel
,
S. T.
(
1983b
). “
Wave field computations on the interface: An ocean acoustic model
,”
Math. Modell.
4
(
5
),
473
488
.
17.
Lingevitch
,
J. F.
,
Collins
,
M. D.
,
Dacol
,
D. K.
,
Drob
,
D. P.
,
Rogers
,
J. C. W.
, and
Siegmann
,
W. L.
(
2002
). “
A wide angle and high Mach number parabolic equation
,”
J. Acoust. Soc. Am.
111
(
2
),
729
734
.
18.
Lingevitch
,
J. F.
,
Collins
,
M. D.
, and
Siegmann
,
W. L.
(
1999
). “
Parabolic equations for gravity and acousto-gravity waves
,”
J. Acoust. Soc. Am.
105
(
6
),
3049
3056
.
19.
Maslov
,
V. P.
, and
Fedoriuk
,
M. V.
(
2001
).
Semi-Classical Approximation in Quantum Mechanics
(
Springer Science & Business Media
,
New York
), Vol. 7.
20.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
(
CRC Press
,
Boca Raton, FL
).
21.
Parakkal
,
S.
,
Gilbert
,
K. E.
, and
Di
,
X.
(
2012
). “
Application of the Beilis–Tappert parabolic equation method to sound propagation over irregular terrain
,”
J. Acoust. Soc. Am.
131
(
2
),
1039
1046
.
22.
Roberts
,
D.
, and
Thomson
,
D. J.
(
2013
). “
A numerically stable rational approximant for the split-step padé propagator
,”
Proc. Mtgs. Acoust.
19
,
070076
.
23.
Sack
,
R.
, and
West
,
M.
(
1995
). “
A parabolic equation for sound propagation in two dimensions over any smooth terrain profile: The generalised terrain parabolic equation (GT-PE)
,”
Appl. Acoust.
45
(
2
),
113
129
.
24.
Salomons
,
E. M.
(
2001
).
Computational Atmospheric Acoustics
(
Springer Science & Business Media
,
New York
).
25.
Stoer
,
J.
, and
Bulirsch
,
R.
(
2013
).
Introduction to Numerical Analysis
(
Springer Science & Business Media
,
New York
), Vol. 12.
26.
Sutherland
,
L. C.
, and
Bass
,
H. E.
(
2004
). “
Atmospheric absorption in the atmosphere up to 160 km
,”
J. Acoust. Soc. Am.
115
(
3
),
1012
1032
.
27.
Tappert
,
F. D.
(
1977
). “
The parabolic approximation method
,” in
Wave Propagation and Underwater Acoustics
(
Springer
,
New York
), pp.
224
287
.
28.
Waxler
,
R.
, and
Assink
,
J.
(
2019
). “
Propagation modeling through realistic atmosphere and benchmarking
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
509
549
.
29.
Waxler
,
R.
,
Assink
,
J.
, and
Velea
,
D.
(
2017
). “
Modal expansions for infrasound propagation and their implications for ground-to-ground propagation
,”
J. Acoust. Soc. Am.
141
(
2
),
1290
1307
.
30.
Waxler
,
R.
,
Evers
,
L. G.
,
Assink
,
J.
, and
Blom
,
P.
(
2015
). “
The stratospheric arrival pair in infrasound propagation
,”
J. Acoust. Soc. Am.
137
(
4
),
1846
1856
.
31.
Waxler
,
R.
,
Hetzer
,
C.
,
Assink
,
J.
, and
Velea
,
D.
(
2021
). “
chetzer-ncpa/ncpaprop-release: NCPAprop v2.1.0
” doi:10.5281/zenodo.5562713.
32.
West
,
M.
,
Gilbert
,
K.
, and
Sack
,
R.
(
1992
). “
A tutorial on the parabolic equation (PE) model used for long range sound propagation in the atmosphere
,”
Appl. Acoust.
37
(
1
),
31
49
.
You do not currently have access to this content.