Laryngeal mucus hydrates and lubricates the deformable tissue of the vocal folds and acts as a boundary layer with the airflow from the lungs. However, the effects of the mucus' viscoelasticity on phonation remain widely unknown and mucus has not yet been established in experimental procedures of voice research. In this study, four synthetic mucus samples were created on the basis of xanthan with focus on physiological frequency-dependent viscoelastic properties, which cover viscosities and elasticities over 2 orders of magnitude. An established ex vivo experimental setup was expanded by a reproducible and controllable application method of synthetic mucus. The application method and the suitability of the synthetic mucus samples were successfully verified by fluorescence evidence on the vocal folds even after oscillation experiments. Subsequently, the impact of mucus viscoelasticity on the oscillatory dynamics of the vocal folds, the subglottal pressure, and acoustic signal was investigated with 24 porcine larynges (2304 datasets). Despite the large differences of viscoelasticity, the phonatory characteristics remained stable with only minor statistically significant differences. Overall, this study increased the level of realism in the experimental setup for replication of the phonatory process enabling further research on pathological mucus and exploration of therapeutic options.

1.
R. J.
Ruben
, “
Redefining the survival of the fittest: Communication disorders in the 21st century
,”
Laryngoscope
110
(
2
),
241
241
(
2000
).
2.
A. L.
Spina
,
R.
Maunsell
,
K.
Sandalo
,
R.
Gusmão
, and
A.
Crespo
, “
Correlation between voice and life quality and occupation
,”
Braz. J. Otorhinolaryngol.
75
(
2
),
275
279
(
2009
).
3.
I. R.
Titze
, “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
(
1988
).
4.
M.
Döllinger
,
F.
Gröhn
,
D.
Berry
,
U.
Eysholdt
, and
G.
Luegmair
, “
Preliminary results on the influence of engineered artificial mucus layer on phonation
,”
J. Speech Lang. Hear. Res.
57
(
2
),
S637
S647
(
2014
).
5.
R.
Bansil
and
B.
Turner
, “
The biology of mucus: Composition, synthesis and organization
,”
Adv. Drug Deliv. Rev.
124
,
3
15
(
2018
).
6.
S. D.
Gray
, “
Cellular physiology of the vocal folds
,”
Otolaryngol. Clin. North Am.
33
(
4
),
679
697
(
2000
).
7.
H.
Bonilha
,
A.
Aikman
,
K.
Hines
, and
D.
Deliyski
, “
Vocal fold mucus aggregation in vocally normal speakers
,”
Logop. Phoniatr. Vocology
33
(
3
),
136
142
(
2008
).
8.
H. S.
Bonilha
,
L.
White
,
K.
Kuckhahn
,
T. T.
Gerlach
, and
D. D.
Deliyski
, “
Vocal fold mucus aggregation in persons with voice disorders
,”
J. Commun. Disord.
45
(
4
),
304
311
(
2012
).
9.
J.
Fahy
and
B.
Dickey
, “
Airway mucus function and dysfunction
,”
N. Engl. J. Med.
363
(
23
),
2233
2247
(
2010
).
10.
B. M.
Lourenço
,
K. M.
Costa
, and
M.
da Silva Filho
, “
Voice disorder in cystic fibrosis patients
,”
PLoS ONE
9
(
5
),
e96769
8
(
2014
).
11.
M. M.
Lucena
,
F. d. S.
da Silva
,
A. D.
da Costa
,
G. R.
Guimarães
,
A. C. N.
Ruas
,
F. P. B.
Braga
,
M. P. B.
Braga
,
J. G. C.
Reis
,
D. C. S.
da Costa
,
M. R.
Palmeiro
,
V. C.
Rolla
, and
C. M.
Valete-Rosalino
, “
Evaluation of voice disorders in patients with active laryngeal tuberculosis
,”
PLoS ONE
10
(
5
),
e0126876
(
2015
).
12.
M. B.
Siegel
and
W. P.
Potsic
, “
Ectodermal dysplasia: The otolaryngologic manifestations and management
,”
Int. J. Pediatr. Otorhinolaryngol.
19
(
3
),
265
271
(
1990
).
13.
S. J.
Peterson-Falzone
,
D. D.
Caldarelli
, and
K. L.
Landahl
, “
Abnormal laryngeal vocal quality in ectodermal dysplasia
,”
Arch. Otolaryngol.
107
,
300
304
(
1981
).
14.
M.
Semmler
,
S.
Kniesburges
,
F.
Pelka
,
M.
Ensthaler
,
O.
Wendler
, and
A.
Schützenberger
, “
Influence of reduced saliva production on phonation in patients with ectodermal dysplasia
,”
J. Voice
(published online
2021
).
15.
K.
Verdolini-Marston
,
I. R.
Titze
, and
D. G.
Druker
, “
Changes in phonation threshold pressure with induced conditions of hydration
,”
J. Voice
4
(
2
),
142
151
(
1990
).
16.
K.
Verdolini
,
I. R.
Titze
, and
A.
Fennell
, “
Dependence of phonatory effort on hydration level
,”
J. Speech Hear. Res.
37
,
1001
1007
(
1994
).
17.
J.
Jiang
,
K.
Verdolini
,
N.
Jennie
,
B.
Aquino
, and
D.
Hanson
, “
Effects of dehydration on phonation in excised canine larynges
,”
Ann. Otol. Rhinol. Laryngol.
109
(
6
),
568
575
(
2000
).
18.
K.
Tanner
,
R. B.
Fujiki
,
C.
Dromey
,
R. M.
Merrill
,
W.
Robb
,
K. A.
Kendall
,
J. A.
Hopkin
,
R. W.
Channell
, and
M. P.
Sivasankar
, “
Laryngeal desiccation challenge and nebulized isotonic saline in healthy male singers and nonsingers: Effects on acoustic, aerodynamic, and self-perceived effort and dryness measures
,”
J. Voice
30
(
6
),
670
676
(
2016
).
19.
M.
Alves
,
E.
Krüger
,
B.
Pillay
,
K.
van Lierde
, and
J.
van der Linde
, “
The effect of hydration on voice quality in adults: A systematic review
,”
J. Voice
33
,
125.e13
125.e28
(
2019
).
20.
H.
Nakagawa
,
H.
Fukuda
,
M.
Kawaida
,
A.
Shiotani
, and
J.
Kanzaki
, “
Lubrication mechanism of the larynx during phonation: An experiment in excised canine larynges
,”
Folia Phoniatr. Logop.
50
,
183
194
(
1998
).
21.
S.
Ayache
,
M.
Ouaknine
,
P. H.
Dejonkere
,
P.
Prindere
, and
A.
Giovanni
, “
Experimental study of the effects of surface mucus viscosity on the glottic cycle
,”
J. Voice
18
(
1
),
107
115
(
2004
).
22.
R.
Bansil
and
B. S.
Turner
, “
Mucin structure, aggregation, physiological functions and biomedical applications
,”
Curr. Opin. Colloid Interface Sci.
11
(
2
),
164
170
(
2006
).
23.
G.
Peters
,
O.
Wendler
,
D.
Böhringer
,
A.-O.
Gostian
,
S. K.
Müller
,
H.
Canziani
,
N.
Hesse
,
M.
Semmler
,
D. A.
Berry
,
S.
Kniesburges
,
W.
Peukert
, and
M.
Döllinger
, “
Human laryngeal mucus from the vocal folds: Rheological characterization by particle tracking microrheology and oscillatory shear rheology
,”
Appl. Sci.
11
(
7
),
3011
(
2021
).
24.
V.
Birk
,
M.
Döllinger
,
A.
Sutor
,
D.
Berry
,
D.
Gedeon
,
M.
Traxdorf
,
O.
Wendler
,
C.
Bohr
, and
S.
Kniesburges
, “
Automated setup for ex vivo larynx experiments
,”
J. Acoust. Soc. Am.
141
(
3
),
1349
1359
(
2017
).
25.
J.
Leal
,
H.
Smyth
, and
D.
Ghosh
, “
Physicochemical properties of mucus and their impact on transmucosal drug delivery
,”
Int. J. Pharm.
532
(
1
),
555
572
(
2017
).
26.
R.
Bansil
,
E.
Stanley
, and
J. T.
Lamont
, “
Mucin biophysics
,”
Annu. Rev. Physiol.
57
(
1
),
635
657
(
1995
).
27.
J.
Kočevar-Nared
,
J.
Kristl
, and
J. Š.
Korbar
, “
Comparative rheological investigation of crude gastric mucin and natural gastric mucus
,”
Biomaterials
18
(
9
),
677
681
(
1997
).
28.
V. J.
Schömig
,
B. T.
Käsdorf
,
C.
Scholz
,
K.
Bidmon
,
O.
Lieleg
, and
S.
Berensmeier
, “
An optimized purification process for porcine gastric mucin with preservation of its native functional properties
,”
RSC Adv.
6
,
44932
44943
(
2016
).
29.
R.
Hamed
and
J.
Fiegel
, “
Synthetic tracheal mucus with native rheological and surface tension properties
,”
J. Biomed. Mater. Res. Part A
102
(
6
),
1788
1798
(
2014
).
30.
K.
Joyner
,
D.
Song
,
R. F.
Hawkins
,
R. D.
Silcott
, and
G. A.
Duncan
, “
A rational approach to form disulfide linked mucin hydrogels
,”
Soft Matter
15
,
9632
9639
(
2019
).
31.
G.
Sworn
, “
Xanthan gum
,” in
Handbook of Hydrocolloids
(
CRC Press
,
Boca Raton, FL
,
2000
), pp.
103
116
.
32.
G.
Singhvi
,
N.
Hans
,
N.
Shiva
, and
S.
Kumar Dubey
, “
Xanthan gum in drug delivery applications
,” in
Natural Polysaccharides in Drug Delivery and Biomedical Applications
, edited by
M. S.
Hasnain
and
A. K.
Nayak
(
Academic Press
,
Cambridge, MA
,
2019
),
Chap. 5
, pp.
121
144
.
33.
T. G.
Mason
, “
Estimating the viscoelastic moduli of complex fluids using the generalized stokes–einstein equation
,”
Rheol. Acta
39
(
4
),
371
378
(
2000
).
34.
R. W.
Chan
and
I. R.
Titze
, “
Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues
,”
Ann. Biomed. Eng.
31
,
482
491
(
2003
).
35.
V.
Birk
,
S.
Kniesburges
,
M.
Semmler
,
D.
Berry
,
C.
Bohr
,
M.
Döllinger
, and
A.
Schützenberger
, “
Influence of glottal closure on the phonatory process in ex vivo porcine larynges
,”
J. Acoust. Soc. Am.
142
(
4
),
2197
2207
(
2017
).
36.
M.
Semmler
,
D. A.
Berry
,
A.
Schützenberger
, and
M.
Döllinger
, “
Fluid-structure-acoustic interactions in an ex vivo porcine phonation model
,”
J. Acoust. Soc. Am.
149
(
3
),
1657
1673
(
2021
).
37.
D. D.
Mehta
,
D. D.
Deliyski
,
T. F.
Quatieri
, and
R. E.
Hillman
, “
Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings
,”
J. Speech Lang. Hear. Res.
54
,
47
54
(
2011
).
38.
H.-J.
Park
,
W.
Cha
,
G.-H.
Kim
,
G.-R.
Jeon
,
B. J.
Lee
,
B.-J.
Shin
,
Y.-G.
Choi
, and
S.-G.
Wang
, “
Imaging and analysis of human vocal fold vibration using two-dimensional (2D) scanning videokymography
,”
J. Voice
30
(
3
),
345
353
(
2016
).
39.
A.
Kist
,
P.
Gómez
,
D.
Dubrovskiy
,
P.
Schlegel
,
M.
Kunduk
,
M.
Echternach
,
R.
Patel
,
M.
Semmler
,
C.
Bohr
,
S.
Dürr
,
A.
Schützenberger
, and
M.
Döllinger
, “
A deep learning enhanced novel software tool for laryngeal dynamics analysis
,”
J. Speech Lang. Hear. Res.
64
(
6
),
1889
1903
(
2021
).
40.
Y.
Maryn
,
M.
Verguts
,
H.
Demarsin
,
J.
van Dinther
,
P.
Gomez
,
P.
Schlegel
, and
M.
Döllinger
, “
Intersegmenter variability in high-speed laryngoscopy-based glottal area waveform measures
,”
Laryngoscope
130
,
E654
E661
(
2020
).
41.
J.
van den Berg
,
J.
Zantema
, and
P.
Doornenbal
, “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
(
5
),
626
631
(
1957
).
42.
S.
Björklund
and
J.
Sundberg
, “
Relationship between subglottal pressure and sound pressure level in untrained voices
,”
J. Voice
30
(
1
),
15
20
(
2016
).
43.
R.
Patel
,
D.
Dubrovskiy
, and
M.
Döllinger
, “
Characterizing vibratory kinematics in children and adults with high-speed digital imaging
,”
J. Speech Lang. Hear. Res.
57
,
S674
S686
(
2014
).
44.
R. J.
Baken
and
R. F.
Orlikoff
,
Clinical Measurement of Speech and Voice
, 2nd. ed. (
Cengage Learning
,
Boston, MA
,
1999
).
45.
E. B.
Holmberg
,
R. E.
Hillman
, and
J. S.
Perkell
, “
Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
(
1988
).
46.
Q.
Qiu
,
H. K.
Schutte
,
L.
Gu
, and
Q.
Yu
, “
An automatic method to quantify the vibration properties of human vocal folds via videokymography
,”
Folia Phoniatr. Logop.
55
,
128
136
(
2003
).
47.
S.-G.
Wang
,
H.-J.
Park
,
B.-J.
Lee
,
S.-M.
Lee
,
B.
Ko
,
S. M.
Lee
, and
Y. M.
Park
, “
A new videokymography system for evaluation of the vibration pattern of entire vocal folds
,”
Auris Nasus Larynx
43
(
3
),
315
321
(
2016
).
48.
E.
Yumoto
,
W. J.
Gould
, and
T.
Baer
, “
Harmonics-to-noise ratio as an index of the degree of hoarseness
,”
J. Acoust. Soc. Am.
71
(
6
),
1544
1550
(
1982
).
49.
J.
Hillenbrand
,
R. A.
Cleveland
, and
R. L.
Erickson
, “
Acoustic correlates of breathy vocal quality
,”
J. Speech Hear. Res.
37
,
769
778
(
1994
).
50.
S.
Bielamowicz
,
J.
Kreiman
,
B. R.
Gerratt
,
M. S.
Dauer
, and
G. S.
Berke
, “
Comparison of voice analysis systems for perturbation measurement
,”
J. Speech Hear. Res.
39
,
126
134
(
1996
).
51.
P.
Schlegel
,
M.
Semmler
,
M.
Kunduk
,
M.
Döllinger
,
C.
Bohr
, and
A.
Schützenberger
, “
Influence of analyzed sequence length on parameters in laryngeal high-speed videoendoscopy
,”
Appl. Sci.
8
(
12
),
2666
(
2018
).
52.
D. D.
Mehta
,
M.
Zañartu
,
T. F.
Quatieri
,
D. D.
Deliyski
, and
R. E.
Hillman
, “
Investigating acoustic correlates of human vocal fold vibratory phase asymmetry through modeling and laryngeal high-speed videoendoscopy
,”
J. Acoust. Soc. Am.
130
(
6
),
3999
4009
(
2011
).
53.
F.
Alipour
,
R. C.
Scherer
, and
E.
Finnegan
, “
Pressure-flow relationships during phonation as afunction of adduction
,”
J. Voice
11
(
2
),
187
194
(National Center for Voice and Speech, Iowa City, IA,
1997
).
54.
I.
Titze
, “
Workshop on acoustic voice production: Summary statement
,” (
1995
).
55.
T.
Crouzier
,
K.
Boettcher
,
A. R.
Geonnotti
,
N. L.
Kavanaugh
,
J. B.
Hirsch
,
K.
Ribbeck
, and
O.
Lieleg
, “
Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding
,”
Adv. Mater. Interfaces
2
(
18
),
1500308
(
2015
).
56.
F.
Alipour
and
S.
Jaiswal
, “
Phonatory characteristics of excised pig, sheep, and cow larynges
,”
J. Acoust. Soc. Am.
123
,
4572
4581
(
2008
).
57.
S.
Falk
,
S.
Kniesburges
,
S.
Schoder
,
B.
Jakubaß
,
P.
Maurerlehner
,
M.
Echternach
,
M.
Kaltenbacher
, and
M.
Döllinger
, “
3D-FV-FE aeroacoustic larynx model for investigation of functional based voice disorders
,”
Front. Physiology
12
,
226
(
2021
).
58.
A.
Lodermeyer
,
E.
Bagheri
,
S.
Kniesburges
,
C.
Näger
,
J.
Probst
,
M.
Döllinger
, and
S.
Becker
, “
The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach
,”
J. Acoust. Soc. Am.
150
(
5
),
3485
3499
(
2021
).
59.
V.
Birk
,
A.
Sutor
,
M.
Döllinger
,
C.
Bohr
, and
S.
Kniesburges
, “
Acoustic impact of ventricular folds on phonation studied in ex vivo human larynx models
,”
Acta Acust. united Acust.
102
,
244
256
(
2016
).
60.
M.
Döllinger
,
S.
Kniesburges
,
D. A.
Berry
,
V.
Birk
,
O.
Wendler
,
S.
Dürr
,
C.
Alexiou
, and
A.
Schützenberger
, “
Investigation of phonatory characteristics using ex vivo rabbit larynges
,”
J. Acoust. Soc. Am.
144
,
142
152
(
2018
).
61.
M.
Döllinger
,
O.
Wendler
,
C.
Gerstenberger
,
T.
Grossmann
,
M.
Semmler
,
H.
Sadeghi
, and
M.
Gugatschka
, “
Juvenile ovine ex vivo larynges: Phonatory, histologic, and micro CT based anatomic analyses
,”
BioMed Res. Int.
2019
,
1
(
2019
).
You do not currently have access to this content.