Previous experiments have shown (1) evidence that exposure to high-intensity sounds (e.g., air-gun signals) may cause damage to the sensory hair cells of the fish ears and impair fish hearing and (2) evidence that in some circumstances such exposures cause minimal structural damage. The contradictory results regarding the damage accrued suggested that the angle of sound energy arrivals at the fish ears may play a part in the propensity of the sound to cause damage to sensory hair cells. To further study this and gain insight into specific details of the differential motion of the otolith relative to the sensory macula when incident sounds arrive from different directions, three-dimensional finite element models were constructed based on the micro-computed tomography imaging of the sagittal otoliths of the bight redfish (Centroberyx gerrardi). We used the models to study the response of fish sagittal otoliths to sounds arriving from horizontal and vertical directions. Sound pressure levels, relative displacement, acceleration, and shear stress of the otoliths and/or otolith-water boundary were calculated and compared. The results suggest that the angle of sound energy arrivals at the otoliths and the geometry of the otolith lead to different magnitudes of the differential motion between the macula and otoliths, with sound arriving in the vertical potentially creating more damage than the same sound arriving from the horizontal.

1.
Aroyan
,
J. L.
(
2001
). “
Three-dimensional modeling of hearing in Delphinus delphis
,”
J. Acoust. Soc. Am.
110
(
6
),
3305
3318
.
2.
Bérenger
,
J. P.
(
1994
). “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
(
2
),
185
200
.
3.
Braun
,
C. B.
, and
Grande
,
T.
(
2008
). “
Evolution of peripheral mechanisms for the enhancement of sound reception
,” in
Springer Handbook of Auditory Research: Fish Bioacoustics
, edited by
A. N.
Popper
,
R. R.
Fay
, and
J. F.
Webb
(
Springer-Verlag
,
New York
), pp.
99
144
.
4.
Campana
,
S. E.
, and
Thorrold
,
S. R.
(
2001
). “
Otoliths, increments, and elements: Keys to a comprehensive understanding of fish populations?
,”
Can. J. Fish. Aquat. Sci.
58
,
30
38
.
5.
Cranford
,
T. W.
, and
Krysl
,
P.
(
2015
). “
Fin whale sound reception mechanisms: Skull vibration enables low-frequency hearing
,”
PLoS One
10
(
1
),
e0116222
.
6.
Dale
,
T.
(
1976
). “
The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae)
,”
Nor. J. Zool.
24
,
85
128
.
7.
Dumont
,
E. R.
,
Piccirillo
,
J.
, and
Grosse
,
I. R.
(
2005
). “
Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats
,”
Anat. Rec. A Discov. Mol. Cell Evol. Biol.
283
,
319
330
.
8.
Dunkelberger
,
D. G.
,
Dean
,
J. M.
, and
Watabe
,
N.
(
1980
). “
The ultrastructure of the otolithic membrane and otolith in the juvenile Mummichog, Fundulus heteroclitus
,”
J. Morphol.
163
,
367
377
.
9.
Fay
,
R. R.
(
1988
).
Hearing in Vertebrates: A Psychophysics Databook
(
Hill-Fay
,
Winnetka, IL
).
10.
Hastings
,
M. C.
,
Popper
,
A. N.
,
Finneran
,
J. J.
, and
Lanford
,
P. J.
(
1996
). “
Effect of low frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus
,”
J. Acoust. Soc. Am.
99
,
1759
1766
.
11.
He
,
Z. Y.
, and
Zhao
,
Y. F.
(
1981
).
Theoretical Basis of Acoustics
(
National Defense Industry Press
,
Beijing
), pp.
231
241
.
12.
Ihlenburg
,
F.
(
2006
).
Finite Element Analysis of Acoustic Scattering
(
Springer
,
New York
).
13.
Jaeger
,
R.
, and
Haslwanter
,
T.
(
2004
). “
Otolith responses to dynamical stimuli: Results of a numerical investigation
,”
Biol. Cybern.
90
,
165
175
.
14.
Krysl
,
P.
,
Hawkins
,
A. D.
,
Schilt
,
C.
, and
Cranford
,
T. W.
(
2012
). “
Angular oscillation of solid scatterers in response to progressive planar acoustic waves: Do fish otoliths rock?
,”
PLoS One
7
,
e42591
.
15.
Ladich
,
F.
, and
Schulz-Mirbach
,
T.
(
2016
). “
Diversity in fish auditory systems: One of the riddles of sensory biology
,”
Front. Ecol. Evol.
4
,
28
.
16.
McCauley
,
R. D.
, and
Duncan
,
A. J.
(
2017
). “
How do impulsive marine seismic surveys impact marine fauna and how can we reduce such impacts?
,” in
Proceedings of Acoustics 2017
, November 19–22, Perth, Australia.
17.
McCauley
,
R. D.
,
Fewtrell
,
J.
,
Duncan
,
A. J.
,
Jenner
,
C.
,
Jenner
,
M.-N.
,
Penrose
,
J. D.
,
Prince
,
R. I. T.
,
Adhitya
,
A.
,
Murdoch
,
J.
, and
McCabe
,
K.
(
2003
). “
Marine seismic surveys: Analysis and propagation of air-gun signals; and effects of exposure on humpback whales, sea turtles, fishes and squid
,” in
Environmental Implications of Offshore Oil and Gas Development in Australia: Further Research
(
Australian Petroleum Production Exploration Association
,
Canberra, Australia
), pp.
364
521
.
18.
McCauley
,
R. D.
,
Fewtrell
,
J.
, and
Popper
,
A. N.
(
2003
). “
High intensity anthropogenic sound damages fish ears
,”
J. Acoust. Soc. Am.
113
,
638
642
.
19.
McCauley
,
R. D.
, and
Salgado-Kent
,
C. P.
(
2012
). “
A lack of correlation between air-gun signal pressure waveforms and fish hearing damage
,”
Adv. Exp. Med. Biol.
730
,
245
250
.
20.
McCauley
,
R. D.
,
Salgado-Kent
,
C. P.
, and
Archer
,
M.
(
2008
). “
Impacts of seismic survey passbys on fish and zooplankton, Scott Reef Lagoon Western Australia: Full report of Curtin University findings
,”
CMST Report 2008-32
(
Curtin University
,
Perth, Australia
), p.
49
.
21.
McCauley
,
R. D.
,
Salgado-Kent
,
C.
,
Levings
,
A.
,
Fischer
,
H.
,
Lloyd
,
J.
, and
Beatty
,
A.
(
2007
). “
Observations, catch and ear pathology of caged fish exposed to seismic survey passes
,” Report prepared for Santos Ltd., CMST Report 2007-19 (
Curtin University
,
Perth, Australia
).
22.
Parmentier
,
E.
,
Vandewalle
,
P.
,
Brié
,
C.
,
Dinraths
,
L.
, and
Lecchini
,
D.
(
2011
). “
Comparative study on sound production in different Holocentridae species
,”
Front. Zool.
8
(
1
),
12
.
23.
Pickles
,
J. O.
(
1993
). “
Hair cells—Mechanosensors and motors
,”
Aust. Acoust. Soc.
21
(
3
),
82
85
.
24.
Popper
,
A. N.
(
1977
). “
Scanning electron microscopic study of sacculus and lagena in the ears of fifteen species of teleost fishes
,”
J. Morphol.
153
,
397
417
.
25.
Popper
,
A. N.
, and
Clarke
,
N. L.
(
1976
). “
The auditory system of the goldfish (Carassius auratus): Effects of intense acoustic stimulation
,”
Comp. Biochem. Physiol.
53
,
11
18
.
26.
Popper
,
A. N.
, and
Fay
,
R. R.
(
1999
). “
The auditory periphery in fishes
,” in
Comparative Hearing: Fish and Amphibians
, edited by
R. R.
Fay
and
A. N.
Popper
(
Springer-Verlag
,
New York
), pp.
43
100
.
27.
Popper
,
A. N.
, and
Hawkins
,
A. D.
(
2018
). “
The importance of particle motion to fishes and invertebrates
,”
J. Acoust. Soc. Am.
143
,
470
486
.
28.
Popper
,
A. N.
, and
Hoxter
,
B.
(
1981
). “
The fine structure of the sacculus and lagena of a teleost fish
,”
Hear. Res.
5
,
245
263
.
29.
Popper
,
A. N.
, and
Lu
,
Z.
(
2000
). “
Structure–function relationships in fish otolith organs
,”
Fish. Res.
46
,
15
25
.
30.
Popper
,
A. N.
, and
Schilt
,
C. R.
(
2008
). “
Hearing and acoustic behavior (basic and applied)
,” in
Fish Bioacoustics
, edited by
J. F.
Webb
,
R. R.
Fay
, and
A. N.
Popper
(
Springer
,
New York
), pp.
17
48
.
31.
Popper
,
A. N.
,
Smith
,
M. E.
,
Cott
,
P. A.
,
Hanna
,
W. B.
,
MacGillivray
,
A. O.
,
Austin
,
M. E.
, and
Mann
,
D. A.
(
2005
). “
Effects of exposure to seismic air-gun use on hearing of three fish species
,”
J. Acoust. Soc. Am.
117
,
3958
3971
.
32.
Ren
,
D.
,
Gao
,
Y.
, and
Feng
,
Q.
(
2013
). “
Comparative study on nano-mechanics and thermodynamics of fish otoliths
,”
Mater. Sci. Eng. C
33
(
1
),
9
14
.
33.
Saitoh
,
S.
, and
Yamada
,
J.
(
1989
). “
Ultrastructure of the saccular epithelium and the otolithic membrane in relation to otolith growth in Tilapia, Oreochromis niloticus (Teleostei: Cichlidae)
,”
Trans. Am. Microsc. Soc.
108
,
223
238
.
34.
Salas
,
A. K.
,
Wilson
,
P. S.
, and
Fuiman
,
L. A.
(
2019a
). “
Predicting pressure sensitivity through ontogeny in larval red drum (Sciaenops ocellatus)
,”
Proc. Meet. Acoust.
37
,
010006
.
35.
Salas
,
A. K.
,
Wilson
,
P. S.
, and
Fuiman
,
L. A.
(
2019b
). “
Ontogenetic change in predicted acoustic pressure sensitivity in larval red drum (Sciaenops ocellatus)
,”
J. Exp. Biol.
222
,
jeb201962
.
36.
Sand
,
O.
, and
Karlsen
,
H. E.
(
1986
). “
Detection of infrasound by the Atlantic cod
,”
J. Exp. Biol.
125
,
197
204
.
37.
Schilt
,
C. R.
,
Cranford
,
T. W.
,
Krysl
,
P.
, and
Hawkins
,
A. D.
(
2011
). “
Vibration of otolithlike scatterers due to low frequency harmonic wave excitation in water
,”
J. Acoust. Soc. Am.
129
,
2472
2472
.
38.
Scholik
,
A. R.
, and
Yan
,
H. Y.
(
2001
). “
Effects of underwater noise on auditory sensitivity of a cyprinid fish
,”
Hear. Res.
152
,
17
24
.
39.
Scholik
,
A. R.
, and
Yan
,
H. Y.
(
2002
). “
The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus
,”
Comp. Biochem. Physiol. A
133
,
43
52
.
40.
Schulz-Mirbach
,
T.
,
Heß
,
M.
, and
Metscher
,
B. D.
(
2013
). “
Sensory epithelia of the fish inner ear in 3D: Studied with high-resolution contrast enhanced microCT
,”
Front. Zool.
10
(
1
),
63
.
41.
Schulz-Mirbach
,
T.
,
Ladich
,
F.
,
Plath
,
M.
, and
Heß
,
M.
(
2019
). “
Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths
,”
Biol. Rev.
94
,
457
482
.
42.
Schulz-Mirbach
,
T.
,
Olbinado
,
M.
,
Rack
,
A.
,
Mittone
,
A.
,
Bravin
,
A.
,
Melzer
,
R. R.
,
Ladich
,
F.
, and
Heß
,
M.
(
2018
). “
In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging
,”
Sci. Rep.
8
,
3121
.
43.
Song
,
J.
,
Mann
,
D. A.
,
Cott
,
P. A.
,
Hanna
,
B. W.
, and
Popper
,
A. N.
(
2008
). “
The inner ears of northern Canadian freshwater fishes following exposure to seismic air-gun sound
,”
J. Acoust. Soc. Am.
124
,
1360
1366
.
44.
Thompson
,
L. L.
, and
Pinsky
,
P. M.
(
1994
). “
Complex wave number Fourier analysis of the p-version finite element method
,”
Comput. Mech.
13
,
255
275
.
45.
Tubelli
,
A. A.
,
Zosuls
,
A.
,
Ketten
,
D. R.
, and
Mountain
,
D. C.
(
2014
). “
Elastic modulus of cetacean auditory ossicles
,”
Anat. Rec.
297
(
5
),
892
900
.
46.
Urick
,
R. J.
(
1983
).
Principles of Underwater Sound
, 3rd ed. (
McGraw-Hill
,
New York
).
47.
Wei
,
C.
,
Au
,
W. W. L.
,
Ketten
,
D. R.
,
Song
,
Z.
, and
Zhang
,
Y.
(
2017
). “
Biosonar signal propagation in the harbor porpoise's (Phocoena phocoena) head: The role of various structures in the formation of the vertical beam
,”
J. Acoust. Soc. Am.
141
(
6
),
4179
4187
.
48.
Wei
,
C.
,
Au
,
W. W. L.
,
Ketten
,
D. R.
, and
Zhang
,
Y.
(
2018a
). “
Finite element simulation of broadband biosonar signal propagation in the near- and far-field of an echolocating Atlantic bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
143
,
2611
2620
.
49.
Wei
,
C.
,
Song
,
Z.
,
Au
,
W. W. L.
,
Zhang
,
Y.
, and
Wang
,
D.
(
2018b
). “
A numerical evidence of biosonar beam formation of a neonate Yangtze finless porpoise (Neophocaena asiaeorientalis)
,”
J. Theor. Comp. Acoust.
26
(
2
),
1850009
.
You do not currently have access to this content.