The issues reported in this article concern the development of methods applied for measurement, processing, and analysis of infrasound signals generated in association with the operation of wind farms. In particular, the discussion involves the results of the analysis using synchrosqueezed wavelet transforms of infrasound noise emitted by a 2 MW wind turbine that have been recorded during its operation in actual conditions. To record infrasound signals, a wireless measurement system was used, consisting of a base station and three synchronized mobile recording stations. To identify the wavelet structures with the highest ratio of energy, the synchrosqueezed wavelet transforms were used, and the courses of six time runs representing instantaneous frequencies were determined. Application of this approach enables the selection of energy-dominant waveforms from the time-frequency images, whose assessment can be performed mainly in terms of qualitative measures. Application of the synchrosqueezed wavelet transform is an effective tool for the purposes of detection and selection in the designated wavelet structures for the recorded infrasound dominant frequencies for which the carried energy ranges have the highest value.

1.
Ambrose
,
S. E.
,
Rand
,
R. W.
, and
Krogh
,
C. M. E.
(
2012
). “
Wind turbine acoustic investigation: Infrasound and low-frequency noise—A case study
,”
Bull. Sci. Technol. Soc.
32
,
128
141
.
2.
Boczar
,
T.
,
Malec
,
T.
, and
Wotzka
,
D.
(
2012
). “
Studies on infrasound noise emitted by wind turbines of large power
,”
Acta Phys. Pol. A
122
,
850
853
.
3.
Boczar
,
T.
,
Zmarzły
,
D.
,
Kozioł
,
M.
, and
Wotzka
,
D.
(
2020a
). “
The use of advanced signal processing methods for the analysis of infrasound generated by high-power wind turbines
,”
Prz. Elektrotechniczny
96
,
68
75
.
4.
Boczar
,
T.
,
Zmarzły
,
D.
,
Kozioł
,
M.
, and
Wotzka
,
D.
(
2020b
). “
Analiza wpływu czynników zewnętrznych na wyniki pomiarów infradźwięków emitowanych przez turbiny wiatrowe” (“Analysis of the influence of external factors on the measurement results of infrasounds emitted by wind turbines”)
,
Prz. Elektrotech.
1
,
115
122
.
5.
Boczar
,
T.
,
Zmarzły
,
D.
,
Kozioł
,
M.
, and
Wotzka
,
D.
(
2020c
). “
Application of correlation analysis for assessment of infrasound signals emission by wind turbines
,”
Sensor
20
,
6891
.
6.
Boczar
,
T.
,
Zmarzły
,
D.
,
Kozioł
,
M.
, and
Wotzka
,
D.
(
2021
). “
The application of time-frequency ridge transformation for the analysis of infrasound signals generated by wind turbines
,”
Appl. Acoust.
177
,
107961
.
7.
Bolin
,
K.
,
Bluhm
,
G.
,
Eriksson
,
G.
, and
Nilsson
,
M. E.
(
2011
). “
Infrasound and low frequency noise from wind turbines: Exposure and health effects
,”
Environ. Res. Lett.
6
,
035103
.
8.
Carlile
,
S.
,
Davy
,
J. L.
,
Hillman
,
D.
, and
Burgemeister
,
K.
(
2018
). “
A review of the possible perceptual and physiological effects of wind turbine noise
,”
Trends Hear.
22
,
2331216518789551
.
9.
Daubechies
,
I.
,
Lu
,
J.
, and
Wu
,
H.-T.
(
2011
). “
Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool
,”
Appl. Comput. Harmon. Anal.
30
,
243
261
.
10.
Evans
,
T.
,
Cooper
,
J.
, and
Lenchine
,
V.
(
2013
). “Infrasound levels near windfarms and in other environments,” www.epa.sa.gov.au/files/477912_infrasound.pdf (Last viewed June 31, 2022).
11.
Feng
,
Z.
,
Chen
,
X.
, and
Liang
,
M.
(
2015
). “
Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
,”
Mech. Syst. Signal Process.
52-53
,
360
375
.
12.
Freiberg
,
A.
,
Schefter
,
C.
,
Girbig
,
M.
,
Murta
,
V. C.
, and
Seidler
,
A.
(
2019
). “
Health effects of wind turbines on humans in residential settings: Results of a scoping review
,”
Environ. Res.
169
,
446
463
.
13.
Hansen
,
C.
, and
Hansen
,
K.
(
2020
). “
Recent advances in wind turbine noise research
,”
Acoustics
2
,
171
206
.
14.
Heinzel
,
G.
,
Rüdiger
,
A.
, and
Schilling
,
R.
(
2002
). “
Spectrum and spectral density estimation by the discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows
,” https://hdl.handle.net/11858/00-001M-0000-0013-557A-5 (Last viewed May 4, 2022).
15.
Hübner
,
G.
,
Pohl
,
J.
,
Hoen
,
B.
,
Firestone
,
J.
,
Rand
,
J.
,
Elliott
,
D.
, and
Haac
,
R.
(
2019
). “
Monitoring annoyance and stress effects of wind turbines on nearby residents: A comparison of U.S. and European samples
,”
Environ. Int.
132
,
105090
.
16.
Ingielewicz
,
R.
, and
Zagubień
,
A.
(
2014
). “
Infrasound noise of natural sources in the environment and infrasound noise of wind turbines
,”
Pol. J. Environ. Stud.
23
,
1323
1327
.
17.
Jakobsen
,
J.
(
2001
). “
Danish guidelines on environmental low frequency noise, infrasound and vibration
,”
J. Low Freq. Noise Vib. Act. Control
20
,
141
148
.
18.
Jakobsen
,
J.
(
2005
). “
Infrasound emission from wind turbines
,”
J. Low Freq. Noise Vib. Act. Control
24
,
145
155
.
19.
Klein
,
L.
,
Gude
,
J.
,
Wenz
,
F.
,
Lutz
,
T.
, and
Krämer
,
E.
(
2018
). “
Advanced computational fluid dynamics (CFD)–multi-body simulation (MBS) coupling to assess low-frequency emissions from wind turbines
,”
Wind Energy Sci.
3
,
713
728
.
20.
Leventhall
,
G.
(
2006
). “
Infrasound from wind turbines—Fact, fiction or deception
,”
Can. Acoust. Acoust. Can.
34
,
29
36
.
21.
Malec
,
T.
,
Boczar
,
T.
,
Wotzka
,
D.
, and
Frącz
,
P.
(
2017
). “
Comparison of low frequency signals emitted by wind turbines of two different generator types
,”
E3S Web Conf.
19
,
01001
.
22.
Meignen
,
S.
,
Oberlin
,
T.
, and
McLaughlin
,
S.
(
2012
). “
A new algorithm for multicomponent signals analysis based on SynchroSqueezing: With an application to signal sampling and denoising
,”
IEEE Trans. Signal Process.
60
,
5787
5798
.
23.
Mirowska
,
M.
(
2001
). “
Evaluation of low-frequency noise in dwellings: New Polish recommendations
,”
J. Low Freq. Noise Vib. Act. Control
20
,
67
74
.
24.
Mirowska
,
M.
(
2002
). “
An investigation and assessment of annoyance of low frequency noise in dwellings
,”
Noise Notes
1
,
30
34
.
25.
Møller
,
H.
, and
Pedersen
,
C. S.
(
2004
). “
Hearing at low and infrasonic frequencies
,”
Noise Health
6
(
23
),
37
57
.
26.
Møller
,
H.
, and
Pedersen
,
C. S.
(
2011
). “
Low-frequency noise from large wind turbines
,”
J. Acoust. Soc. Am.
129
,
3727
3744
.
27.
Nguyen
,
D.-P.
,
Hansen
,
K.
, and
Zajamsek
,
B.
(
2020
). “
Human perception of wind farm vibration
,”
J. Low Freq. Noise Vib. Act. Control
39
,
17
27
.
28.
Nguyen
,
P. D.
,
Hansen
,
K. L.
,
Catcheside
,
P.
,
Hansen
,
C. H.
, and
Zajamsek
,
B.
(
2021
). “
Long-term quantification and characterisation of wind farm noise amplitude modulation
,”
Measurement
182
,
109678
.
29.
Pawlas
,
K.
,
Pawlas
,
N.
, and
Zachara
,
J.
(
2013
). “
Przegląd kryteriów oceny infradźwięków i hałasu niskoczęstotliwościowego w środowisku zawodowym i pozazawodowym” (“Infrasound and low frequency noise assessment at workplaces and environment”)
,
Med. Środ.
16
,
82
89
.
30.
Peri
,
E.
, and
Tal
,
A.
(
2020
). “
A sustainable way forward for wind power: Assessing turbines' environmental impacts using a holistic GIS analysis
,”
Appl. Energy
279
,
115829
.
31.
Pierzga
,
R.
,
Boczar
,
T.
,
Wotzka
,
D.
, and
Zmarzły
,
D.
(
2013
). “
Studies on infrasound noise generated by operation οf low-power wind turbine
,”
Acta Phys. Pol. A
124
,
542
545
.
32.
Pilger
,
C.
, and
Ceranna
,
L.
(
2017
). “
The influence of periodic wind turbine noise on infrasound array measurements
,”
J. Sound Vib.
388
,
188
200
.
33.
Shepherd
,
K. P.
, and
Hubbard
,
H. H.
(
1991
). “
Physical characteristics and perception of low frequency noise from wind turbines
,”
Noise Control Eng. J.
36
,
5
15
.
34.
Stead
,
M.
,
Cooper
,
J.
, and
Evans
,
T.
(
2014
). “
Comparison of infrasound measured at people's ears when walking to that measured near wind farms
,”
Acoust. Aust.
42
,
197
203
.
35.
Thakur
,
G.
,
Brevdo
,
E.
,
Fučkar
,
N. S.
, and
Wu
,
H.-T.
(
2013
). “
The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications
,”
Signal Process.
93
,
1079
1094
.
36.
van Kamp
,
I.
, and
van den Berg
,
F.
(
2018
). “
Health effects related to wind turbine sound, including low-frequency sound and infrasound
,”
Acoust. Aust.
46
,
31
57
.
37.
Wagner
,
S.
,
Bareis
,
R.
, and
Guidati
,
G.
(
1996
).
Wind Turbine Noise
(
Springer
,
Berlin
), pp.
18
21
.
38.
Wu
,
X.
,
Hu
,
W.
,
Huang
,
Q.
,
Chen
,
C.
,
Jacobson
,
M. Z.
, and
Chen
,
Z.
(
2020a
). “
Optimizing the layout of onshore wind farms to minimize noise
,”
Appl. Energy
267
,
114896
.
39.
Wu
,
X.
,
Hu
,
W.
,
Huang
,
Q.
,
Chen
,
C.
,
Liu
,
Z.
, and
Chen
,
Z.
(
2020b
). “
Optimal power dispatch strategy of onshore wind farms considering environmental impact
,”
Int. J. Electr. Power Energy Syst.
116
,
105548
.
40.
Xu
,
Z.
,
Wei
,
J.
,
Zhang
,
S.
,
Liu
,
Z.
,
Chen
,
X.
,
Yan
,
Q.
, and
Guo
,
J.
(
2021
). “
A state-of-the-art review of the vibration and noise of wind turbine drivetrains
,”
Sustain. Energy Technol. Assess.
48
,
101629
.
41.
Yauwenas
,
Y.
,
Zajamšek
,
B.
,
Reizes
,
J.
,
Timchenko
,
V.
, and
Doolan
,
C. J.
(
2017
). “
Numerical simulation of blade-passage noise
,”
J. Acoust. Soc. Am.
142
,
1575
1586
.
42.
Zagubień
,
A.
, and
Wolniewicz
,
K.
(
2016
). “
Everyday exposure to occupational/non-occupational infrasound noise in our life
,”
Arch. Acoust.
41
,
659
668
.
43.
Zagubień
,
A.
, and
Wolniewicz
,
K.
(
2020
). “
The assessment of infrasound and low frequency noise impact on the results of learning in primary school—Case study
,”
Arch. Acoust.
45
,
93
102
.
44.
Zajamšek
,
B.
,
Hansen
,
K. L.
,
Doolan
,
C. J.
, and
Hansen
,
C. H.
(
2016
). “
Characterisation of wind farm infrasound and low-frequency noise
,”
J. Sound Vib.
370
,
176
190
.
45.
Zhao
,
Y.
,
Cui
,
H.
,
Huo
,
H.
, and
Nie
,
Y.
(
2018
). “
Application of synchrosqueezed wavelet transforms for extraction of the oscillatory parameters of subsynchronous oscillation in power systems
,”
Energies
11
,
1525
.
You do not currently have access to this content.