Room acoustic simulations using the finite-difference time-domain method on a wide frequency range can be computationally expensive and typically contain numerical dispersion. Numerical dispersion can be audible and, thus, constitutes an artifact in auralizations. There is a need to measure perceptual thresholds for numerical dispersion to achieve an optimal balance between computational complexity and audibility of dispersion. This work measures the perceptual detection thresholds for numerical dispersion in binaural auralizations of two acoustically different rooms. Numerical dispersion is incorporated into measured binaural room impulse responses (BRIRs) by the means of filters that represent the dispersion that plane waves experience, which propagate in the simulation in the direction of the worst-case dispersion error. The results show that the perceptual detection threshold is generally lower for the most reverberant room and greatly depends on the source signal independently of the room in which the threshold is measured. It is the most noticeable in the pure BRIRs, i.e., with an impulse as source signal, and almost unnoticeable with speech. The results also show that there was no statistical evidence that the perceptual thresholds for the conditions where numerical dispersion was present or absent in the direct path of the BRIRs be different.

1.
Ahrens
,
J.
, and
Andersson
,
C.
(
2019
). “
Perceptual evaluation of headphone auralization of rooms captured with spherical microphone arrays with respect to spaciousness and timbre
,”
J. Acoust. Soc. Am.
145
(
4
),
2783
2794
.
2.
Bilbao
,
S.
,
Politis
,
A.
, and
Hamilton
,
B.
(
2019
). “
Local time-domain spherical harmonic spatial encoding for wave-based acoustic simulation
,”
IEEE Signal Process. Lett.
26
(
4
),
617
621
.
3.
Cobos
,
M.
,
Escolano
,
J.
,
López
,
J. J.
, and
Pueo
,
B.
(
2008
). “
Subjective effects of dispersion in the simulation of room acoustics using digital waveguide mesh
,” in
Audio Engineering Society Convention 124
(
Audio Engineering Society
, Amsterdam, The
Netherlands
).
4.
Fairbanks
,
G.
(
1960
).
Voice and Articulation Drillbook
, 2nd ed. (
Harper and Row
,
New York
), p.
127
.
5.
Friedman
,
M.
(
1937
). “
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
,”
J. Am. Stat. Assoc.
32
(
200
),
675
701
.
6.
Hamilton
,
B.
(
2016
). “
Finite difference and finite volume methods for wave-based modelling of room acoustics
,” Ph.D. thesis,
The University of Edinburgh
,
Edinburgh, Scotland
.
7.
Hamilton
,
B.
, and
Bilbao
,
S.
(
2017
). “
FDTD methods for 3-D room acoustics simulation with high-order accuracy in space and time
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
25
(
11
),
2112
2124
.
8.
Karjalainen
,
M.
, and
Erkut
,
C.
(
2004
). “
Digital waveguides versus finite difference structures: Equivalence and mixed modeling
,”
EURASIP J. Appl. Signal Process.
2004
,
978
989
.
9.
Kowalczyk
,
K.
, and
Van Walstijn
,
M.
(
2011
). “
Room acoustics simulation using 3-D compact explicit FDTD schemes
,”
IEEE Trans. Audio. Speech. Lang. Process.
19
(
1
),
34
46
.
10.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
(
2B
),
467
477
.
11.
López
,
J. J.
,
Escolano
,
J.
, and
Pueo
,
B.
(
2007
). “
Simulation of complex and large rooms using a digital waveguide mesh
,” in
Audio Engineering Society Convention 123
(
Audio Engineering Society
,
New York
).
12.
MATLAB
(
2019
).
Version 9.6.0.1307630 (R2019a)
(
The Mathworks, Inc
.,
Natick, MA
).
13.
Meyer
,
J.
,
Lokki
,
T.
, and
Ahrens
,
J.
(
2020
). “
Identification of virtual receiver array geometries that minimize audibility of numerical dispersion in binaural auralizations of finite difference time domain simulations
,” in
Audio Engineering Society Convention 149
(
Audio Engineering Society
), online.
14.
Mokhtari
,
P.
,
Takemoto
,
H.
,
Nishimura
,
R.
, and
Kato
,
H.
(
2008
). “
Computer simulation of HRTFs for personalization of 3D audio
,” in
Second International Symposium on Universal Communication, 2008 (ISUC'08)
(IEEE,
Osaka, Japan
), pp.
435
440
.
15.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
(
2010
).
Verification and Validation in Scientific Computing
(
Cambridge University Press
,
Cambridge
).
16.
Prepeliţă
,
S. T.
,
Gómez Bolaños
,
J.
,
Geronazzo
,
M.
,
Mehra
,
R.
, and
Savioja
,
L.
(
2019
). “
Pinna-related transfer functions and lossless wave equation using finite-difference methods: Verification and asymptotic solution
,”
J. Acoust. Soc. Am.
146
(
5
),
3629
3645
.
17.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
(
2011
). “
A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing
,”
Comput. Methods Appl. Mech. Eng.
200
(
25–28
),
2131
2144
.
18.
Saarelma
,
J.
,
Botts
,
J.
,
Hamilton
,
B.
, and
Savioja
,
L.
(
2016
). “
Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance
,”
J. Acoust. Soc. Am.
139
(
4
),
1822
1832
.
19.
Saarelma
,
J.
, and
Savioja
,
L.
(
2016
). “
Audibility of dispersion error in room acoustic finite-difference time-domain simulation in the presence of absorption of air
,”
J. Acoust. Soc. Am.
140
(
6
),
EL545
EL550
.
20.
Saarelma
,
J.
, and
Savioja
,
L.
(
2019
). “
Audibility of dispersion error in room acoustic finite-difference time-domain simulation in the presence of a single early reflection
,”
J. Acoust. Soc. Am.
145
(
4
),
2761
2769
.
21.
Sargent
,
R. G.
(
2010
). “
Verification and validation of simulation models
,” in
Proceedings of the 2010 Winter Simulation Conference
(IEEE, Baltimore, MD), pp.
166
183
.
22.
Schneider
,
J. B.
, and
Wagner
,
C. L.
(
1999
). “
FDTD dispersion revisited: Faster-than-light propagation
,”
IEEE Microwave Guided Wave Lett.
9
(
2
),
54
56
.
23.
Shapiro
,
S. S.
, and
Wilk
,
M. B.
(
1965
). “
An analysis of variance test for normality (complete samples)
,”
Biometrika
52
(
3/4
),
591
611
.
24.
Sheaffer
,
J.
,
Van Walstijn
,
M.
,
Rafaely
,
B.
, and
Kowalczyk
,
K.
(
2014
). “
A spherical array approach for simulation of binaural impulse responses using the finite difference time domain method
,” in
Proceedings of Forum Acusticum
, Kraków, Poland.
25.
Sheaffer
,
J.
,
Van Walstijn
,
M.
,
Rafaely
,
B.
, and
Kowalczyk
,
K.
(
2015
). “
Binaural reproduction of finite difference simulations using spherical array processing
,”
IEEE/ACM Trans. Audio. Speech. Lang. Process.
23
(
12
),
2125
2135
.
26.
Sheaffer
,
J.
,
Webb
,
C.
, and
Fazenda
,
B. M.
(
2013
). “
Modelling binaural receivers in finite difference simulation of room acoustics
,”
Proc. Mtgs. Acoust.
19
(
1
),
015098
.
27.
Southern
,
A.
,
Murphy
,
D.
,
Lokki
,
T.
, and
Savioja
,
L.
(
2011
). “
The perceptual effects of dispersion error on room acoustic model auralization
,” in
Proceedings of Forum Acusticum
,
Aalborg
,
Denmark
, pp.
1553
1558
.
28.
Southern
,
A.
,
Murphy
,
D. T.
, and
Savioja
,
L.
(
2012
). “
Spatial encoding of finite difference time domain acoustic models for auralization
,”
IEEE Trans. Audio. Speech. Lang. Process.
20
(
9
),
2420
2432
.
29.
Stade
,
P.
,
Bernschütz
,
B.
, and
Rühl
,
M.
(
2012
). “
A spatial audio impulse response compilation captured at the WDR broadcast studios
,” in
27th Tonmeistertagung-VDT International Convention
, pp.
551
567
.
30.
Van Mourik
,
J.
, and
Murphy
,
D.
(
2014
). “
Explicit higher-order FDTD schemes for 3D room acoustic simulation
,”
IEEE/ACM Trans. Audio, Speech Lang. Process.
22
(
12
),
2003
2011
.
31.
Van Walstijn
,
M.
, and
Kowalczyk
,
K.
(
2008
). “
On the numerical solution of the 2d wave equation with compact fdtd schemes
,” in
Proceedings of Digital Audio Effects (DAFx)
,
Espoo
,
Finland, pp
.
205
212
.
32.
Webb
,
C. J.
, and
Bilbao
,
S.
(
2012
). “
Binaural simulations using audio rate FDTD schemes and CUDA
,” in
Proceedings of the 15th International Conference on Digital Audio Effects (DAFx-12)
, York, England.
33.
Wilcoxon
,
F.
(
1945
). “
Individual comparisons by ranking methods
,”
Biom. Bull.
1
,
80
83
.
34.
Wilcoxon
,
F.
(
1992
). “
Individual comparisons by ranking methods
,” in
Breakthroughs in Statistics
(
Springer
,
New York
), pp.
196
202
.
You do not currently have access to this content.