Underwater noise transmission in the ocean environment is a complex physical phenomenon involving not only widely varying physical parameters and dynamical scales but also uncertainties in the ocean parameters. It is challenging to construct generalized physical models that can predict transmission loss in a broad range of situations. In this regard, we propose a convolutional recurrent autoencoder network (CRAN) architecture, which is a data-driven deep learning model for learning far-field acoustic propagation. Being data-driven, the CRAN model relies only on the quality of the data and is agnostic to how the data are obtained. The CRAN model can learn a reduced-dimensional representation of physical data and can predict the far-field acoustic signal transmission loss distribution in the ocean environment. We demonstrate the ability of the CRAN model to learn far-field transmission loss distribution in a two-dimensional ocean domain with depth-dependent sources. Results show that the CRAN can learn the essential physical elements of acoustic signal transmission loss generated due to geometric spreading, refraction, and reflection from the ocean surface and bottom. Such ability of the CRAN to learn complex ocean acoustics transmission has the potential for real-time far-field underwater noise prediction for marine vessel decision-making and online control.

1.
Abadi
,
M.
(
2015
). “
TensorFlow: Large-scale machine learning on heterogeneous systems
https://www.tensorflow.org/ (Last viewed April 30, 2022).
2.
Borrel-Jensen
,
N.
,
Engsig-Karup
,
A. P.
, and
Jeong
,
C.-H.
(
2021
). “
Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries
,”
JASA Express Lett.
1
(
12
),
122402
.
3.
Bronstein
,
M. M.
,
Bruna
,
J.
,
LeCun
,
Y.
,
Szlam
,
A.
, and
Vandergheynst
,
P.
(
2017
). “
Geometric deep learning: Going beyond Euclidean data
,”
IEEE Signal Process. Mag.
34
(
4
),
18
42
.
4.
Bukka
,
S. R.
,
Gupta
,
R.
,
Magee
,
A. R.
, and
Jaiman
,
R. K.
(
2021
). “
Assessment of unsteady flow predictions using hybrid deep learning based reduced-order models
,”
Phys. Fluids
33
(
1
),
013601
.
5.
Chi
,
J.
,
Li
,
X.
,
Wang
,
H.
,
Gao
,
D.
, and
Gerstoft
,
P.
(
2019
). “
Sound source ranging using a feed-forward neural network trained with fitting-based early stopping
,”
J. Acoust. Soc. Am.
146
(
3
),
EL258
EL264
.
6.
Deo
,
I. K.
, and
Jaiman
,
R. K.
(
2022
). “
Predicting waves in fluids with deep neural network
,”
Phys. Fluids
34
,
067108
.
7.
Duarte
,
C. M.
,
Chapuis
,
L.
,
Collin
,
S. P.
,
Costa
,
D. P.
,
Devassy
,
R. P.
,
Eguiluz
,
V. M.
,
Erbe
,
C.
,
Gordon
,
T. A.
,
Halpern
,
B. S.
,
Harding
,
H. R.
,
Havlik
,
M. N.
,
Meekan
,
M.
,
Merchant
,
N. D.
,
Miksis-Olds
,
J. L.
,
Parsons
,
M.
,
Predragovic
,
M.
,
Radford
,
A. N.
,
Radford
,
C. A.
,
Simpson
,
S. D.
,
Slabbekoorn
,
H.
,
Staaterman
,
E.
,
Van Opzeeland
,
I. C.
,
Winderen
,
J.
,
Zhang
,
X.
, and
Juanes
,
F.
(
2021
). “
The soundscape of the Anthropocene ocean
,”
Science
371
(
6529
),
eaba4658
.
8.
Erbe
,
C.
,
Marley
,
S. A.
,
Schoeman
,
R. P.
,
Smith
,
J. N.
,
Trigg
,
L. E.
, and
Embling
,
C. B.
(
2019
). “
The effects of ship noise on marine mammals—A review
,”
Front. Mar. Sci.
6
,
606
.
9.
Ferguson
,
E. L.
(
2021
). “
Multitask convolutional neural network for acoustic localization of a transiting broadband source using a hydrophone array
,”
J. Acoust. Soc. Am.
150
(
1
),
248
256
.
10.
Fotiadis
,
S.
,
Pignatelli
,
E.
,
Valencia
,
M. L.
,
Cantwell
,
C.
,
Storkey
,
A.
, and
Bharath
,
A. A.
(
2020
). “
Comparing recurrent and convolutional neural networks for predicting wave propagation
,” arXiv:2002.08981.
11.
Hornik
,
K.
(
1991
). “
Approximation capabilities of multilayer feedforward networks
,”
Neural Netw.
4
(
2
),
251
257
.
12.
Hsieh
,
W. W.
(
2009
).
Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels
(
Cambridge University
,
Cambridge, UK
).
13.
Huang
,
Z.
,
Xu
,
J.
,
Gong
,
Z.
,
Wang
,
H.
, and
Yan
,
Y.
(
2018
). “
Source localization using deep neural networks in a shallow water environment
,”
J. Acoust. Soc. Am.
143
(
5
),
2922
2932
.
14.
James
,
K. R.
, and
Dowling
,
D. R.
(
2005
). “
A probability density function method for acoustic field uncertainty analysis
,”
J. Acoust. Soc. Am.
118
(
5
),
2802
2810
.
15.
James
,
K. R.
, and
Dowling
,
D. R.
(
2011
). “
Pekeris waveguide comparisons of methods for predicting acoustic field amplitude uncertainty caused by a spatially uniform environmental uncertainty (L)
,”
J. Acoust. Soc. Am.
129
(
2
),
589
592
.
16.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
,
Schmidt
,
H.
, and
Tolstoy
,
A.
(
2011
).
Computational Ocean Acoustics
(
Springer
,
New York
).
17.
Kingma
,
D. P.
, and
Ba
,
J.
(
2014
). “
Adam: A method for stochastic optimization
,” arXiv:1412.6980.
18.
Lee
,
K.
, and
Carlberg
,
K. T.
(
2020
). “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
.
19.
Leshno
,
M.
,
Lin
,
V. Y.
,
Pinkus
,
A.
, and
Schocken
,
S.
(
1993
). “
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
,”
Neural Netw.
6
(
6
),
861
867
.
20.
Mallik
,
W.
,
Jaiman
,
R. K.
, and
Jelovica
,
J.
(
2021
). “
Kinematically consistent recurrent neural networks for learning inverse problems in wave propagation
,” arXiv:2110.03903.
21.
Mallik
,
W.
,
Jaiman
,
R. K.
, and
Jelovica
,
J.
(
2022
). “
Convolutional recurrent autoencoder network for learning underwater ocean acoustics
,” arXiv:2204.05573.
22.
Mansour
,
T.
(
2019
). “
Deep neural networks are lazy: On the inductive bias of deep learning
,” Master's thesis,
MIT
,
Cambridge, MA
.
23.
McDougall
,
T. J.
,
Jackett
,
D. R.
,
Wright
,
D. G.
, and
Feistel
,
R.
(
2003
). “
Accurate and computationally efficient algorithms for potential temperature and density of seawater
,”
J. Atmos. Ocean. Technol.
20
(
5
),
730
741
.
24.
Moseley
,
B.
,
Nissen-Meyer
,
T.
, and
Markham
,
A.
(
2020
). “
Deep learning for fast simulation of seismic waves in complex media
,”
Solid Earth
11
(
4
),
1527
1549
.
25.
Niu
,
H.
,
Ozanich
,
E.
, and
Gerstoft
,
P.
(
2017
). “
Ship localization in Santa Barbara Channel using machine learning classifiers
,”
J. Acoust. Soc. Am.
142
(
5
),
EL455
EL460
.
26.
Porter
,
M. B.
(
2010
). “
Bellhop: A beam/ray trace code
,” https://oalib-acoustics.org/website_resources/AcousticsToolbox/Bellhop-2010-1.pdf (Last viewed June 20, 2022).
27.
Porter
,
M. B.
, and
Bucker
,
H. P.
(
1987
). “
Gaussian beam tracing for computing ocean acoustic fields
,”
J. Acoust. Soc. Am.
82
(
4
),
1349
1359
.
28.
Porter
,
M. B.
, and
Liu
,
Y.-C.
(
1994
). “
Finite-element ray tracing
,”
Theor. Comput. Acoust.
2
,
947
956
.
29.
Smith
,
J. D.
,
Azizzadenesheli
,
K.
, and
Ross
,
Z. E.
(
2021
). “
Eikonet: Solving the eikonal equation with deep neural networks
,”
IEEE Trans. Geosci. Remote Sens.
59
(
12
),
10685
10696
.
30.
Sorteberg
,
W. E.
,
Garasto
,
S.
,
Cantwell
,
C. C.
, and
Bharath
,
A. A.
(
2019
). “
Approximating the solution of surface wave propagation using deep neural networks
,” in
INNS Big Data and Deep Learning Conference
(
Springer
,
New York
), pp.
246
256
.
31.
Wang
,
Z.
,
Bovik
,
A. C.
,
Sheikh
,
H. R.
, and
Simoncelli
,
E. P.
(
2004
). “
Image quality assessment: From error visibility to structural similarity
,”
IEEE Trans. Image Process.
13
(
4
),
600
612
.
You do not currently have access to this content.