The NiMnGa alloy is a typical magnetic shape memory alloy with up to 6% immense strain, high energy density, and low effective elastic modulus. These comprehensive characteristics make it possible to realize a low-frequency underwater acoustic transducer. To describe the field-induced dynamic strain, an equivalent circuit model (ECM) of a longitudinal NiMnGa transducer is presented as a lumped parameter model, which couples magnetics, mechanics, and acoustics. In this paper, we focus on the piezomagnetic equations as the constitutive relationship of the NiMnGa element with a dynamic magnetic field. Furthermore, combined with the dynamic kinetic equation, the equivalent circuit is derived, and it has the advantage of containing acoustical terminals. The proposed model can predict the resonance frequency, effective stiffness, and input impedance of the NiMnGa transducer. Finally, a finite element model (FEM) is developed to verify the lumped parameter model. The results indicate that the spring's stiffness increases the resonance frequency, while the mass load is on the contrary, and they both agree well with the results of ECM. In addition, the FEM and ECM can also predict the dynamic responses, which provide a guideline for the design of longitudinal NiMnGa transducers.

1.
O.
Söderberg
,
Y.
Ge
,
A.
Sozinov
,
S.
Hannula
, and
V.
Lindroos
, “
Recent breakthrough development of the magnetic shape memory effect in Ni–Mn–Ga alloys
,”
Smart Mater. Struct.
14
,
S223
–S235 (
2005
).
2.
R. C.
O'Handley
,
C. P.
Henry
,
J.
Feuchtwanger
,
M.
Marioni
,
P. G.
Tello
,
D.
Bono
, and
S. M.
Allen
, “
Potential new transducer materials: Ferromagnetic shape memory alloys showing 6% field‐induced strain
,”
J. Acoust. Soc. Am.
109
,
2435
(
2001
).
3.
L.
Riccardi
,
D.
Naso
,
B.
Turchiano
, and
H.
Janocha
, “
Adaptive control of positioning systems with hysteresis based on magnetic shape memory alloys
,”
IEEE Trans. Contr. Syst. Technol.
21
,
2011
2023
(
2013
).
4.
A.
Saren
,
D.
Musiienko
,
A.
Smith
,
J.
Tellinen
, and
K.
Ullakko
, “
Modeling and design of a vibration energy harvester using the magnetic shape memory effect
,”
Smart Mater. Struct.
24
,
095002
(
2015
).
5.
M. A. A.
Farsangi
and
H.
Zohoor
, “
Acoustic energy harvesting via magnetic shape memory alloys
,”
J. Phys. D: Appl. Phys.
52
,
135501
(
2019
).
6.
L.
Riccardi
,
D.
Naso
,
H.
Janocha
, and
B.
Turchiano
, “
A precise positioning actuator based on feedback-controlled magnetic shape memory alloys
,”
Mechatronics
22
,
568
576
(
2012
).
7.
R. N.
Couch
and
I.
Chopra
, “
A quasi-static model for NiMnGa magnetic shape memory alloy
,”
Smart Mater. Struct.
16
,
S11
–S21 (
2007
).
8.
R. C.
O'Handley
, “
Model for strain and magnetization in magnetic shape-memory alloys
,”
J. Appl. Phys.
83
,
3263
3270
(
1998
).
9.
C.
Yu
,
G.
Kang
,
D.
Song
, and
X.
Xie
, “
Three-dimensional constitutive model for magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy single crystals
,”
Acta Mech. Sin.
35
,
563
588
(
2019
).
10.
J.
Ziske
,
F.
Ehle
,
H.
Neubert
,
A. D.
Price
, and
J.
Lienig
, “
A simple phenomenological model for magnetic shape memory actuators
,”
IEEE Trans. Magn.
51
,
4002608
(
2015
).
11.
E.
Faran
and
D.
Shilo
, “
A discrete twin-boundary approach for simulating the magneto-mechanical response of Ni–Mn–Ga
,”
Smart Mater. Struct.
25
,
095020
(
2016
).
12.
N. N.
Sarawate
, “
Characterization and modeling of the ferromagnetic shape memory alloy Ni-Mn-Ga for sensing and actuation
,” Ph.D. thesis,
Ohio State University
,
Columbus, OH
(
2008
).
13.
N.
Sarawate
and
M.
Dapino
, “
Dynamic strain-field hysteresis model for ferromagnetic shape memory Ni-Mn-Ga
,” in Behavior and Mechanics of Multifunctional and Composite Materials 2008, edited by
Marcelo J.
Dapino
and
Zoubeida
Ounaies
,
Proc. SPIE
6929
,
69291R
(
2008
).
14.
A.
Ballato
, “
Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
1189
1240
(
2001
).
15.
K.
Been
,
S.
Nam
,
H.
Lee
,
H.-s.
Seo
, and
W.
Moon
, “
A lumped parameter model of the single free-flooded ring transducer
,”
J. Acoust. Soc. Am.
141
,
4740
4755
(
2017
).
16.
H.
Wang
,
R.
Guo
,
Y.
Lan
,
H.
Sun
, and
W.
Lu
, “
Research on a kind of longitudinal transducer driven by Ni-Mn-Ga alloys
,” in
2021 OES China Ocean Acoustics (COA)
(
2021
), pp.
62
65
.
17.
F.
Claeyssen
,
D.
Colombani
,
A.
Tessereau
, and
B.
Ducros
, “
Giant dynamic magnetostrain in rare earth-iron magnetostrictive materials
,”
IEEE Trans. Magn.
27
,
5343
5345
(
1991
).
18.
C.
Henry
, “
Dynamic actuation properties of Ni-Mn-Ga ferromagnetic shape memory alloys
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
(
2005
).
19.
H.
Balke
and
G.
Suchaneck
, “
Commentary: On the linear coupling of mechanical and magnetic fields in magnetoelectrical composites
,”
AIP Adv.
7
,
060901
(
2017
).
20.
Z.
Kaczkowski
, “
Piezomagnetic parameters of the magnetostrictive materials
,”
Arch. Acoust.
23
,
307
329
(
1998
), available at https://acoustics.ippt.pan.pl/index.php/aa/article/view/914.
21.
J. L.
Pérez-Aparicio
and
H.
Sosa
, “
A continuum three-dimensional, fully coupled, dynamic, non-linear finite element formulation for magnetostrictive materials
,”
Smart Mater. Struct.
13
,
493
502
(
2004
).
22.
A.
Oonishi
,
K.
Hirata
,
B.
Yoo
, and
N.
Niguchi
, “
Frequency response characteristics for linear actuator made by NiMnGa shape memory alloy
,”
Int. J. Appl. Electromagn. Mech.
39
,
913
918
(
2012
).
23.
I. J.
Busch-Vishniac
,
Electromechanical Sensors and Actuators
(
Springer
,
New York
,
1999
), pp.
18
22
.
24.
J. L.
Butler
and
C. H.
Sherman
,
Transducers and Arrays for Underwater Sound
(
Springer
,
New York
,
2007
), pp.
381
385
.
You do not currently have access to this content.