A method is presented for simultaneous estimation of the probability distributions of both anthropogenic and wind-generated underwater noise power spectral density using only acoustic data recorded with a single hydrophone. Probability density models for both noise sources are suggested, and the model parameters are estimated using the method of maximum likelihood. A generic mixture model is utilized to model a time invariant anthropogenic noise distribution. Wind-generated noise is assumed normally distributed with a wind speed-dependent mean. The mean is then modeled as an affine linear function of the wind-generated noise level at a reference frequency, selected in a frequency range where the anthropogenic noise is less dominant. The method was used to successfully estimate the wind-generated noise spectra from ambient noise recordings collected at two locations in the southern Baltic Sea. At the North location, 3 km from the nearest shipping lane, the ship noise surpasses the wind-generated noise almost 100% of the time in the frequency band 63–400 Hz during summer for wind speed 7 m/s. At the South location, 14 km to the nearest shipping lane, the ship noise dominance is lower but still 40%–90% in the same frequencies and wind speed.

1.
Baltic Marine Environment Protection Commission
(
2022
). “
Helcom map and data service
,” https://helcom.fi/baltic-sea-trends/data-maps/ (Last viewed 23 June 2022).
2.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
(
2000
). “
A trust region method based on interior point techniques for nonlinear programming
,”
Math. Program.
89
(
1
),
149
185
.
3.
Dekeling
,
R.
,
Tasker
,
M.
,
Van der Graaf
,
A.
,
Ainslie
,
M.
,
Andersson
,
M.
,
André
,
M.
,
Borsani
,
J.
,
Brensing
,
K.
,
Castellote
,
M.
,
Cronin
,
D.
,
Dalen
,
J.
,
Folegot
,
T.
,
Leaper
,
R.
,
Pajala
,
J.
,
Redman
,
P.
,
Robinson
,
S. P.
,
Sigray
,
P.
,
Sutton
,
G.
,
Thomsen
,
F.
,
Werner
,
S.
,
Wittekind
,
D.
, and
Young
,
J. V.
(
2014
).
Monitoring Guidance for Underwater Noise in European Seas. Part I: Executive Summary
(
European Union
,
Luxembourg
).
4.
Dieterich
,
C.
,
Schimanke
,
S.
,
Wang
,
S.
,
Väli
,
G.
,
Liu
,
Y.
,
Hordoir
,
R.
,
Höglund
,
A.
, and
Meier
,
M.
(
2013
). “
Evaluation of the SMHI coupled atmosphere-ice-ocean model RCA4-NEMO (SMHI)
,”
Report Oceanography 47
(
Swedish Meteorological and Hydrological Institute
,
Norrköping, Sweden
).
5.
Duarte
,
C. M.
,
Chapuis
,
L.
,
Collin
,
S. P.
,
Costa
,
D. P.
,
Devassy
,
R. P.
,
Eguiluz
,
V. M.
,
Erbe
,
C.
,
Gordon
,
T. A.
,
Halpern
,
B. S.
,
Harding
,
H. R.
,
Havlik
,
M. N.
,
Meekan
,
M.
,
Merchant
,
N. D.
,
Miksis-Olds
,
J. L.
,
Parsons
,
M.
,
Predragovic
,
M.
,
Radford
,
A. N.
,
Radford
,
C. A.
,
Simpson
,
S. D.
,
Slabbekoorn
,
H.
,
Staaterman
,
E.
,
Van Opzeeland
,
I. C.
,
Winderen
,
J.
,
Zhang
,
X.
, and
Juanes
,
F.
(
2021
). “
The soundscape of the Anthropocene ocean
,”
Science
371
(
6529
),
eaba4658
.
6.
European Commission
(
2017
). Commission decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing decision 2010/477/EU (
European Union
,
Brussels, Belgium
).
7.
Gedamke
,
J.
,
Harrison
,
J.
,
Hatch
,
L.
,
Angliss
,
R.
,
Barlow
,
J.
,
Berchok
,
C.
,
Caldow
,
C.
,
Castellote
,
M.
,
Cholewiak
,
D.
,
DeAngelis
,
M.
,
Dziak
,
R.
,
Garland
,
E.
,
Guan
,
S.
,
Hastings
,
S.
,
Holt
,
M.
,
Laws
,
B.
,
Mellinger
,
D.
,
Moore
,
S.
,
Moore
,
T. J.
,
Oleson
,
E.
,
Pearson-Meyer
,
J.
,
Piniak
,
W.
,
Redfern
,
J.
,
Rowles
,
T.
,
Scholik-Schlomer
,
A.
,
Smith
,
A.
,
Soldevilla
,
M.
,
Stadler
,
J.
,
Van Parijs
,
S.
, and
Wahle
,
C.
(
2016
).
Ocean Noise Strategy Roadmap
(
National Oceanographic and Atmostpheric Administration
,
Washington, DC
).
8.
Haver
,
S. M.
,
Gedamke
,
J.
,
Hatch
,
L. T.
,
Dziak
,
R. P.
,
Van Parijs
,
S.
,
McKenna
,
M. F.
,
Barlow
,
J.
,
Berchok
,
C.
,
DiDonato
,
E.
,
Hanson
,
B.
,
Haxel
,
J.
,
Holt
,
M.
,
Lipski
,
D.
,
Matsumoto
,
H.
,
Meinig
,
C.
,
Mellinger
,
D. K.
,
Moore
,
S. E.
,
Oleson
,
E. M.
,
Soldevilla
,
M. S.
, and
Klincko
,
H.
(
2018
). “
Monitoring long-term soundscape trends in U.S. waters: The NOAA/NPS ocean noise reference station network
,”
Mar. Policy
90
,
6
13
.
9.
Hughes
,
S. J.
,
Ellis
,
D. D.
,
Chapman
,
D. M.
, and
Staal
,
P. R.
(
1990
). “
Low-frequency acoustic propagation loss in shallow water over hard-rock seabeds covered by a thin layer of elastic–solid sediment
,”
J. Acoust. Soc. Am.
88
(
1
),
283
297
.
10.
Ingenito
,
F.
, and
Wolf
,
S.
(
1989
). “
Site dependence of wind-dominated ambient noise in shallow water
,”
J. Acoust. Soc. Am.
85
(
1
),
141
145
.
11.
Kinda
,
G. B.
,
Le Courtois
,
F.
, and
Stéphan
,
Y.
(
2017
). “
Ambient noise dynamics in a heavy shipping area
,”
Mar. Pollut. Bull.
124
(
1
),
535
546
.
12.
Lalander
,
E.
,
Larsson Nordström
,
R.
, and
Andersson
,
M. H.
(
2021
). “
Underwater soundscape at the Northern Midsea bank—The influence of ship noise on ambient noise and its implications for marine mammal management
,” FOI-R-5168-SE (
Swedish Defence Research Agency FOI
,
Stockholm, Sweden
).
13.
Lemon
,
D. D.
,
Farmer
,
D. M.
, and
Watts
,
D. R.
(
1984
). “
Acoustic measurements of wind speed and precipitation over a continental shelf
,”
J. Geophys. Res.
89
,
3462
3472
, .
14.
McWhinnie
,
L.
,
Smallshaw
,
L.
,
Serra-Sogas
,
N.
,
O'Hara
,
P. D.
, and
Canessa
,
R.
(
2017
). “
The grand challenges in researching marine noise pollution from vessels: A horizon scan for 2017
,”
Front. Mar. Sci.
4
,
31
.
15.
Merchant
,
N. D.
,
Witt
,
M. J.
,
Blondel
,
P.
,
Godley
,
B. J.
, and
Smith
,
G. H.
(
2012
). “
Assessing sound exposure from shipping in coastal waters using a single hydrophone and automatic identification system (AIS) data
,”
Mar. Pollut. Bull.
64
,
1320
1329
.
16.
Mustonen
,
M.
,
Klauson
,
A.
,
Andersson
,
M.
,
Clorennec
,
D.
,
Folegot
,
T.
,
Koza
,
R.
,
Pajala
,
J.
,
Persson
,
L.
,
Tegowski
,
J.
,
Tougaard
,
J.
,
Wahlberg
,
M.
, and
Sigray
,
P.
(
2019
). “
Spatial and temporal variability of ambient underwater sound in the Baltic Sea
,”
Sci. Rep.
9
(
1
),
13237
.
17.
Mustonen
,
M.
,
Klauson
,
A.
,
Folégot
,
T.
, and
Clorennec
,
D.
(
2020
). “
Natural sound estimation in shallow water near shipping lanes
,”
J. Acoust. Soc. Am.
147
,
EL177
EL183
.
18.
Mustonen
,
M.
,
Klauson
,
A.
,
Tommingas
,
M.
, and
Berdnikova
,
J.
(
2017
). “
Assessment of the proportion of anthropogenic underwater noise levels in passive acoustic monitoring
,”
J. Acoust. Soc. Am.
142
,
2685
2685
.
19.
Poikonen
,
A.
(
2012
). “
Measurements, analysis and modeling of wind-driven ambient noise in shallow brackish water
,” Ph.D. dissertation,
Aalto University
,
Espoo, Finland
.
20.
Poikonen
,
A.
, and
Madekivi
,
S.
(
2010
). “
Wind-generated ambient noise in a shallow brackish water environment in the archipelago of the Gulf of Finland
,”
J. Acoust. Soc. Am.
127
,
3385
3393
.
21.
Reeder
,
D. B.
,
Sheffield
,
E. S.
, and
Mach
,
S. M.
(
2011
). “
Wind-generated ambient noise in a topographically isolated basin: A pre-industrial era proxy
,”
J. Acoust. Soc. Am.
129
,
64
73
.
22.
Seger
,
K. D.
,
Al-Badrawi
,
M. H.
,
Miksis-Olds
,
J. L.
,
Kirsch
,
N. J.
, and
Lyons
,
A. P.
(
2018
). “
An empirical mode decomposition-based detection and classification approach for marine mammal vocal signals
,”
J. Acoust. Soc. Am.
144
(
6
),
3181
3190
.
23.
Shajahan
,
N.
,
Barclay
,
D. R.
, and
Lin
,
Y.-T.
(
2020
). “
Quantifying the contribution of ship noise to the underwater sound field
,”
J. Acoust. Soc. Am.
148
(
6
),
3863
3872
.
24.
Sigray
,
P.
,
Borsani
,
J.
,
Le Courtois
,
F.
,
Andersson
,
M.
,
Azzellino
,
A.
,
Castellote
,
M.
,
Ceyrac
,
L.
,
Dekeling
,
R.
,
Haubner
,
N.
,
Hegarty
,
M.
,
Hedgeland
,
D.
,
Juretzek
,
C.
,
Kinneging
,
N.
,
Klauson
,
A.
,
Leaper
,
R.
,
Liebschner
,
A.
,
Maglio
,
A.
,
Mihanović
,
H.
,
Mueller
,
A.
,
Novellino
,
A.
,
Outinen
,
O.
,
Tougaard
,
J.
,
Prospathopoulos
,
A.
, and
Weilgart
,
L.
(
2022
). “
Assessment framework for EU threshold values for continuous underwater sound: Recommendations from the Technical Group on Underwater Noise (TG Noise)
,” TG Noise Technical Advice report DL (European Commission, 2022), Vol. 3.
25.
Theodoridis
,
S.
(
2015
).
Machine Learning: A Bayesian and Optimization Perspective
(
Elsevier
,
New York
).
26.
United Nations
(
2021
).
The Second World Ocean Assessment
,
Vol. 2
(
United Nations Office of Legal Affairs
,
New York
).
27.
Urick
,
R.
(
1983
).
Principles of Underwater Sound
(
Peninsula
,
Los Altos, CA
), pp.
210
211
.
28.
Vagle
,
S.
,
Large
,
W. G.
, and
Farmer
,
D. M.
(
1990
). “
An evaluation of the WOTAN technique of inferring oceanic winds from underwater ambient sound
,”
J. Atmos. Ocean. Technol.
7
,
576
595
.
29.
Verfuß
,
U.
,
Andersson
,
M.
,
Folegot
,
T.
,
Laanearu
,
J.
,
Matuschek
,
R.
,
Pajala
,
J.
,
Sigray
,
P.
,
Tegowski
,
J.
, and
Tougaard
,
J.
(
2015
). “
BIAS standards for noise measurements. Background information, Guidelines and Quality assurance. Amended version
,” https://biasproject.files.wordpress.com/2016/04/bias_standards_v5_final.pdf (Last viewed 20 January 2022).
30.
Ward
,
J.
,
Wang
,
L.
,
Robinson
,
S.
, and
Harris
,
P.
(
2021
). “
Standard for data processing of measured data
,” Report of the EU INTERREG Joint Monitoring Programme for Ambient Noise North Sea (Jomopans) (
European Union
,
Brussels, Belgium
).
31.
Wenz
,
G. M.
(
1962
). “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34
,
1936
1956
.
32.
Zhang
,
Y.
,
Yang
,
K.
, and
Yang
,
Q.
(
2020
). “
Probability density function of ocean noise based on a variational Bayesian Gaussian mixture model
,”
J. Acoust. Soc. Am.
147
(
4
),
2087
2097
.
You do not currently have access to this content.