A landmark is a familiar target in terms of the echoes that it can produce and is important for echolocation-based navigation by bats, robots, and blind humans. A brain-inspired system (BIS) achieves confident recognition, defined as classification to an arbitrarily small error probability (PE), by employing a voting process with an echo sequence. The BIS contains sensory neurons implemented with binary single-layer perceptrons trained to classify echo spectrograms with PE and generate excitatory and inhibitory votes in face neurons until a landmark-specific face neuron achieves recognition by reaching a confidence vote level (CVL). A discrete random step process models the vote count to show the recognition probability can achieve any desired accuracy by decreasing PE or increasing CVL. A hierarchical approach first classifies surface reflector and volume scatterer target categories and then uses that result to classify two subcategories that form four landmarks. The BIS models blind human echolocation to recognize four human-made and foliage landmarks by acquiring suitably sized and dense audible echo sequences. The sensorimotor BIS employs landmark-specific CVL values and a 2.7° view increment to acquire echo sequences that achieve zero-error recognition of each landmark independent of the initial view.

1.
C.
Moss
and
A.
Surlykke
, “
Probing the natural scene by echolocation in bats
,”
Front. Behav. Neurosci.
4
,
33
(
2010
).
2.
W. W. L.
Au
and
K. J.
Snyder
, “
Long-range target detection in open waters by an echolocating Atlantic Bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
68
(
4
),
1077
1084
(
1980
).
3.
L.
Thaler
,
G.
Reich
,
X.
Zhang
,
D.
Wang
,
G. E.
Smith
,
Z.
Tao
,
R. S. A.
Bin
,
R.
Abdullah
,
M.
Cherniakov
,
C. J.
Baker
,
D.
Kish
, and
M.
Antoniou
, “
Mouth-clicks used by blind expert human echolocators—Signal description and model based signal synthesis
,”
PLoS Comput. Biol.
13
(
9
),
e1005670
(
2017
).
4.
L.
Kleeman
and
R.
Kuc
, “
Sonar sensing
,” in
Springer Handbook of Robotics
, 2nd ed., edited by
B.
Siciliano
and
O.
Khatib
(
Springer
,
Cambridge, UK
,
2016
), pp.
753
782
.
5.
J.
Rasmussen
, “
Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models
,”
IEEE Trans. Syst. Man Cybern.
SMC-13
(
3
),
257
266
(
1983
).
6.
A.
Devaney
, “
Nonuniqueness in the inverse scattering problem
,”
J. Math. Phys.
19
,
1526
1531
(
1978
).
7.
K.
Nagatani
and
H.
Choset
, “
Toward robust sensor based exploration by constructing reduced generalized voronoi graph
,” in
Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289)
(
1999
), Vol.
3
, pp.
1687
1692
.
8.
R.
Kuc
, “
Recognizing retro-reflectors with an obliquely-oriented multi-point sonar and acoustic flow
,”
Int. J. Rob. Res.
22
(
2
),
129
145
(
2003
).
9.
R.
Kuc
, “
Neuro-computational processing of moving sonar echoes classifies and localizes foliage
,”
J. Acoust. Soc. Am.
116
(
3
),
1811
1818
(
2004
).
10.
R.
Kuc
, “
Neuromorphic processing of moving sonar data for estimating passing range
,”
IEEE Sens. J.
7
(
5
),
851
859
(
2007
).
11.
H.
Peremans
,
K.
Audenaert
, and
J.
Campenhout
, “
A high-resolutions sensor based on tri-aural perception
,”
IEEE Trans. Rob. Autom.
9
(
1
),
36
48
(
1993
).
12.
R.
Kuc
, “
Binaural sonar electronic travel aid provides vibrotactile cues for landmark, reflector motion and surface texture classification
,”
IEEE Trans. Biomed. Eng.
49
,
1173
1180
(
2002
).
13.
Ö.
Bozma
and
R.
Kuc
, “
A physical model-based analysis of heterogeneous environments using sonar—ENDURA method
,”
IEEE Trans. Pattern Anal. Mach. Intell.
16
(
5
),
497
506
(
1994
).
14.
L.
Kleeman
and
R.
Kuc
, “
Mobile robot sonar for target localization and classification
,”
Int. J. Rob. Res.
14
(
4
),
295
318
(
1995
).
15.
J.
Jensen
, “
Medical ultrasound imaging
,”
Prog. Biophys. Mol. Biol.
93
,
153
165
(
2007
).
16.
R.
Kuc
, “
Generating B-scans of the environment with a conventional sonar
,”
IEEE Sens. J.
8
,
151
160
(
2008
).
17.
P. A.
Saillant
,
J. A.
Simmons
,
S. P.
Dear
, and
T. A.
McMullen
, “
A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation and transformation receiver
,”
J. Acoust. Soc. Am.
94
(
5
),
2691
2712
(
1993
).
18.
H.
Peremans
and
J.
Hallam
, “
The spectrogram correlation and transformation receiver, revisited
,”
J. Acoust. Soc. Am.
104
(
2
),
1101
1110
(
1998
).
19.
C.
Ming
,
S.
Haro
,
A. M.
Simmons
, and
J. A.
Simmons
, “
A comprehensive computational model of animal biosonar signal processing
,”
PLoS Comput. Biol.
17
(
2
),
e1008677
(
2021
).
20.
R.
Müller
and
R.
Kuc
, “
Foliage echoes: A probe into the ecological acoustics of bat echolocation
,”
J. Acoust. Soc. Am.
108
(
2
),
836
845
(
2000
).
21.
N.
Harper
and
P.
McKerrow
, “
Recognising plants with ultrasonic sensing for mobile robot navigation
,”
Rob. Auton. Syst.
34
(
2-3
),
71
82
(
2001
).
22.
Y.
Yovel
,
M.
Franz
,
P.
Stilz
, and
H.-U.
Schnitzler
, “
Plant classification from bat-like echolocation signals
,”
PLoS Comput. Biol.
4
(
3
),
e1000032
(
2008
).
23.
L.
Zhang
and
R.
Müller
, “
Large-scale recognition of natural landmarks with deep learning based on biomimetic sonar echoes
,”
Bioinspir. Biomim.
17
(
2
),
026011
(
2022
).
24.
I.
Eliakim
,
Z.
Cohen
,
G.
Kosa
, and
Y.
Yovel
, “
A fully autonomous terrestrial bat-like acoustic robot
,”
PLoS Comput. Biol.
14
(
9
),
e1006406
(
2018
).
25.
B.
Barshan
and
R.
Kuc
, “
Differentiating sonar reflections from corners and planes by employing an intelligent sensor
,”
IEEE Trans. Pattern Anal. Mach. Intell.
12
(
6
),
560
569
(
1990
).
26.
R.
Kuc
, “
Biomimetic sonar recognizes objects using binaural information
,”
J. Acoust. Soc. Am.
102
(
2
),
689
696
(
1997
).
27.
J.
Reijniers
and
H.
Peremans
, “
Biomimetic sonar system performing spectrum-based localization
,”
IEEE Trans. Rob.
23
(
6
),
1151
1159
(
2007
).
28.
J.
Sutlive
and
R.
Mueller
, “
Dynamic echo signatures created by a biomimetic sonar head
,”
Bioinspir. Biomim.
14
(
6
),
14
22
(
2019
).
29.
A. J.
Kolarik
,
S.
Cirstea
,
S.
Pardhan
, and
B. C. J.
Moore
, “
A summary of research investigating echolocation abilities of blind and sighted humans
,”
Hear. Res.
310
,
60
68
(
2014
).
30.
J. L.
Milne
,
M. A.
Goodale
, and
L.
Thaler
, “
The role of head movements in the discrimination of 2-D shape by blind echolocation experts
,”
Atten. Percept. Psychophys.
76
(
6
),
1828
1837
(
2014
).
31.
M.
Sumiya
,
K.
Ashihara
,
H.
Watanabe
,
T.
Terada
,
S.
Hiryu
, and
H.
Ando
, “
Effectiveness of time-varying echo information for target geometry identification in bat-inspired human echolocation
,”
PLoS One
16
(
5
),
e0250517
(
2021
).
32.
B.
Bushway
, “
Blind man describes abstract sculpture with echolocation
,” www.youtube.com/watch?v=VMTLGvBudWI (Last viewed June 24, 2021).
33.
D.
Kish
,
C. F.
Moss
, and
L.
Thaler
, “
Echolocation and consciousness
,” www.youtube.com/watch?v=A_tqqvIpoX0&t=6s (Last viewed March 24, 2022.).
34.
R.
Kuc
, “
Audible biomimetic sonar images for target analysis
,”
Proc. Meet. Acoust.
30
,
015017
(
2017
).
35.
X.
Pitkow
,
S.
Liu
,
D. E.
Angelaki
,
G. C.
DeAngelis
, and
A.
Pouget
, “
How can single sensory neurons predict behavior?
,”
Neuron
87
(
2
),
411
423
(
2015
).
36.
D. I.
Perrett
,
J. K.
Hietanen
,
M. W.
Oram
, and
P. J.
Benson
, “
Organization and functions of cells responsive to faces in the temporal cortex
,”
Phil. Trans. R. Soc. Lond. B
335
,
23
30
(
1992
).
37.
J.
O'Keefe
and
N.
Burgess
, “
Geometric determinants of the place fields of hippocampal neurons
,”
Nature
381
,
425
428
(
1996
).
38.
D.
Vanderelst
,
J.
Steckel
,
A.
Boen
,
H.
Peremans
, and
M. W.
Holderied
, “
Place recognition using batlike sonar
,”
Elife
5
,
1
23
(
2016
).
39.
R.
Kuc
, “
Artificial neural network classification of surface reflectors and volume scatterers using sequential echoes acquired with a biomimetic audible sonar
,”
J. Acoust. Soc. Am.
147
(
4
),
2357
2364
(
2020
).
40.
R.
Kuc
, “
Artificial neural network classification of foliage targets from spectrograms of sequential echoes using a biomimetic audible sonar
,”
J. Acoust. Soc. Am.
148
(
5
),
3270
3278
(
2020
).
41.
R. A.
Altes
, “
Detection, estimation, and classification with spectrograms
,”
J. Acoust. Soc. Am.
67
(
4
),
1232
1246
(
1980
).
42.
P.
Doyle
and
J.
Snell
, “
Random walks and electric networks
,” (
2000
).
43.
R.
Kuc
and
V.
Kuc
, “
Modeling human echolocation of near-range targets with an audible sonar
,”
J. Acoust. Soc. Am.
139
,
581
587
(
2016
).
44.
R.
Kuc
, “
Pseudo-amplitude scan sonar maps
,”
IEEE Trans. Rob. Autom.
17
(
5
),
767
770
(
2001
).
45.
J. A. M.
Rojas
,
J. A.
Hermosilla
,
R. S.
Montero
, and
P. L. L.
Espi
, “
Physical analysis of several organic signals for human echolocation: Hand and finger produced pulses
,”
Acta Acust.
96
(
6
),
1069
1077
(
2010
).
46.
S. S.
Stevens
and
J.
Volkmann
, “
The relation of pitch to frequency: A revised scale
,”
Am. J. Psychol.
53
(
3
),
329
353
(
1940
).
47.
D.
Rumelhart
,
G.
Hinton
, and
R.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
48.
L.
Bottou
, “
Stochastic gradient descent tricks
,” in
Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science
, edited by
G.
Montavon
,
G.
Orr
, and
K.
Müller
(
Springer
,
New York
,
2012
), pp.
421
436
.
49.
S.
Raudys
, “
Evolution and generalization of a single neurone: I. Single-layer perceptron as seven statistical classifiers
,”
Neural Networks
11
(
2
),
283
296
(
1998
).
50.
S.
Raudys
, “
On the universality of the single-layer perceptron model
,” in
Neural Networks and Soft Computing
, edited by
L.
Rutkowski
and
J.
Kacprzyk
(
Physica-Verlag HD
,
Heidelberg, Germany
,
2003
), pp.
79
86
.
51.
J.
Hawkins
,
M.
Lewis
,
M.
Klukas
,
S.
Purdy
, and
S.
Ahmad
, “
A framework for intelligence and cortical function based on grid cells in the neocorex
,”
Front. Neural Circuits
12
,
121
(
2019
).
52.
G. I.
Parisi
,
R.
Kemker
,
J.
Part
,
C.
Kanan
, and
S.
Wermter
, “
Continual lifelong learning with neural networks: A review
,”
Neural Netw.
113
,
54
71
(
2019
).
53.
D.
Hassabis
,
D.
Kumaran
,
C.
Summerfield
, and
M.
Botvinic
, “
Neuroscience-inspired artificial intelligence
,”
Neuron
95
(
2
),
245
258
(
2017
).
You do not currently have access to this content.