For simple, safe, portable, and inexpensive evaluation suitable for leg bone diseases of racehorses in the field, an ultrasonic measurement technique was applied to evaluate wave velocities. A digital model of the third metacarpal bone with the bucked shin was fabricated using high-resolution peripheral quantitative computerized tomography data of a racehorse. This model was anisotropic and heterogeneous, and was constructed using the measured ultrasonic wave velocities in the bone. With this model, ultrasonic wave propagation along the bone axis was simulated using the elastic finite-difference time-domain method. We found two main waves with different propagation velocities. The fast-waves showed a wave velocity close to the longitudinal wave in the axial direction. However, the apparent velocities changed dramatically owing to bone surface irregularities (changes of the shape) in the area of bucked shin. The slow-waves showed a wave velocity close to the shear wave, which was unaffected by the bone surface irregularities. The simple comparison of different wave behaviors may be a suitable parameter for the initial in vivo screening of bucked shin in the legs of racehorses, which can be performed in the field.

1.
R. C.
Boston
and
D. M.
Nunamaker
, “
Gait and speed as exercise components of risk factors associated with onset of fatigue injury of the third metacarpal bone in 2-year-old Thoroughbred racehorses
,”
Am. J. Vet. Res.
61
,
602
–608 (
2000
).
2.
S. L.
Jalim
,
C. W.
McIlwraith
,
N. L.
Goodman
, and
G. A.
Anderson
, “
Lag screw fixation of dorsal cortical stress fractures of the third metacarpal bone in 116 racehorses
,”
Equine Vet. J.
42
(
7
),
586
–590 (
2010
).
3.
Japan Racing Association
, “
Number of new patients
,”
Annu. Rep. Racehorse Hygiene
11
,
24
44
(
1999
).
4.
Y.
Katayama
,
N.
Ishida
,
M.
Kaneko
,
S.
Yamaoka
, and
M.
Oikawa
, “
The influence of exercise intensity on bucked shin complex in horses
,”
J. Equine Sci.
12
(
4
),
139
–143 (
2001
).
5.
V. A.
Lacombe
,
C.
Sogaro-Robinson
, and
S. M.
Reed
, “
Diagnostic utility of computed tomography imaging in equine intracranial conditions
,”
Equine Vet. J.
42
(
5
),
393
–399 (
2010
).
6.
P.
Laugier
, “
Instrumentation for in vivo ultrasonic characterization of bone strength
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Contr.
55
,
1179
–1196 (
2008
).
7.
R. S.
Siffert
and
J. K.
Jonathan
, “
Ultrasonic bone assessment: The time has come
,”
Bone
40
,
5
–8 (
2007
).
8.
J.-G.
Minonzio
,
N.
Bochud
,
Q.
Vallet
,
Y.
Bala
,
D.
Ramiandrisoa
,
H.
Follet
,
D.
Mitton
, and
P.
Laugier
, “
Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study
,”
Bone
116
,
111
–119 (
2018
).
9.
Q.
Vallet
,
N.
Bochud
,
C.
Chappard
,
P.
Laugier
, and
J. G.
Minonzio
, “
In vivo characterization of cortical bone using guided waves measured by axial transmission
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Contr.
63
,
1361
–1371 (
2016
).
10.
E.
Bossy
,
M.
Talmant
, and
P.
Laugier
, “
Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study
,”
J. Acoust. Soc. Am.
112
,
297
–307 (
2002
).
11.
E.
Bossy
,
M.
Talmant
, and
P.
Laugier
, “
Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models
,”
J. Acoust. Soc. Am.
115
,
2314
–2324 (
2004
).
12.
P. H.
Nicholson
,
P.
Moilanen
,
T.
Kärkkäinen
,
J.
Timonen
, and
S.
Cheng
, “
Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application
,”
Physiol. Meas.
23
,
755
–768 (
2002
).
13.
F.
Lefebvre
,
Y.
Deblock
,
P.
Campistron
,
D.
Ahite
, and
J. J.
Fabre
, “
Development of a new ultrasonic technique for bone and biomaterials in vitro characterization
,”
J. Biomed. Mater. Res.
63
,
441
–446 (
2002
).
14.
T. N.
Tran
,
L.
Stieglitz
,
Y. J.
Gu
, and
L. H.
Le
, “
Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue
,”
Ultrasound Med. Biol.
39
,
2422
–2430 (
2013
).
15.
C. B.
Machado
,
W. C. D. A.
Pereira
,
M.
Granke
,
M.
Talmant
,
F.
Padilla
, and
P.
Laugier
, “
Experimental and simulation results on the effect of cortical bone mineralization in ultrasound axial transmission measurements: A model for fracture healing ultrasound monitoring
,”
Bone
48
,
1202
–1209 (
2011
).
16.
P.
Moilanen
,
M.
Talmant
,
P. H. F.
Nicholson
,
S.
Cheng
,
J.
Timonen
, and
P.
Laugier
, “
Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments
,”
J. Acoust. Soc. Am.
122
,
2439
2445
(
2007
).
17.
G.
Haïat
,
S.
Naili
,
Q.
Grimal
,
M.
Talmant
,
C.
Desceliers
, and
C.
Soize
, “
Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission
,”
J. Acoust. Soc. Am.
125
,
4043
4052
(
2009
).
18.
L.
Bustamante
,
M.
Saeki
, and
M.
Matsukawa
, “
Characterization of shear waves in cortical bone using the axial transmission technique
,”
Jpn. J. Appl. Phys.
58
,
SGGE20
(
2019
).
19.
Y.
Nagatani
,
H.
Imaizumi
,
T.
Fukuda
,
M.
Matsukawa
,
Y.
Watanabe
, and
T.
Otani
, “
Applicability of finite-difference time-domain method to simulation of wave propagation in cancellous bone
,”
Jpn. J. Appl. Phys.
45
,
7186
–7190 (
2006
).
20.
Y.
Nagatani
,
K.
Mizuno
,
T.
Saeki
,
M.
Matsukawa
,
T.
Sakaguchi
, and
H.
Hosoi
, “
Numerical and experimental study on the wave attenuation in bone–FDTD simulation of ultrasound propagation in cancellous bone
,”
Ultrasonics
48
,
607
–612 (
2008
).
21.
K.
Yee
, “
Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media
,”
IEEE Trans. Antenna Propag.
14
,
302
307
(
1966
).
22.
K.
Chiba
,
N.
Nango
,
S.
Kubota
,
N.
Okazaki
,
K.
Taguchi
,
M.
Osaki
, and
M.
Ito
, “
Relationship between microstructure and degree of mineralization in subchondral bone of osteoarthritis: A synchrotron radiation μCT study
,”
J. Bone Miner. Res.
27
,
1511
–1517 (
2012
).
23.
Y.
Yamato
,
M.
Matsukawa
,
T.
Yanagitani
,
K.
Yamazaki
,
H.
Mizukawa
, and
A.
Nagano
, “
Correlation between hydroxyapatite crystallite orientation and ultrasonic wave velocities in bovine cortical bone
,”
Calcif. Tissue Int.
82
,
162
–169 (
2008
).
24.
T.
Otani
, “
Quantitative estimation of bone density and bone quality using acoustic parameters of cancellous bone for fast and slow waves
,”
Jpn. J. Appl. Phys.
44
(
6B
),
4578
–4582 (
2005
).
25.
T.
Hata
,
Y.
Nagatani
,
K.
Takano
, and
M.
Matsukawa
, “
Simulation study of axial ultrasonic wave propagation in heterogeneous bovine cortical bone
,”
J. Acoust. Soc. Am.
140
,
3710
3717
(
2016
).
26.
K.
Takano
,
Y.
Nagatani
, and
M.
Matsukawa
, “
Simulation study of axial ultrasound transmission in heterogeneous cortical bone model
,”
Jpn. J. Appl. Phys.
56
,
07JF29
(
2017
).
27.
Hand Book of Image Analysis
, edited by
M.
Takagi
(
The University of Tokyo Publication Office, Tokyo
), p.
441
(
1991
).
28.
D.
Suga
,
T.
Nakatsuji
,
K.
Yamamoto
,
M.
Matsukawa
,
T.
Otani
,
H.
Aida
, and
H.
Tsubone
, “
Relationship between longitudinal wave velocity in the axial direction and HAp crystallites alignment in equine cortical bone
,”
J. Jpn. Soc. Bone Morphom
21
(
2
),
S75
(
2011
).
29.
J. L.
Rose
,
Ultrasonic Waves in Solid Media
(
Cambridge University Press
,
Cambridge
,
1999
), p.
367
.
30.
T. H.
Smit
,
J. M.
Huyghe
, and
S. C.
Cowin
, “
Estimation of the poroelastic parameters of cortical bone
,”
J. Biomech.
35
,
829
835
(
2002
).
31.
A.
Hosokawa
and
T.
Otani
, “
Ultrasonic wave propagation in bovine cancellous bone
,”
J. Acoust. Soc. Am.
101
,
558
–562 (
1997
).
32.
T.
Nakatsuji
,
K.
Yamamoto
,
D.
Suga
,
T.
Yanagitani
,
M.
Matsukawa
,
K.
Yamazaki
, and
Y.
Matsuyama
, “
Three-dimensional anisotropy of ultrasonic wave velocity in bovine cortical bone: Effects of hydroxyapatite crystallites orientation and microstructure
,”
Jpn. J. Appl. Phys.
50
,
07HF18
(
2011
).
33.
J. E.
Zimmer
and
J. R.
Cost
, “
Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements
,”
"J. Acoust. Soc. Am.
47
,
795
–803 (
1970
).
34.
E. F.
Toro
and
J. F.
Clarke
,
Numerical Methods for Wave Propagation, Kluwer
(
Academic Pub
.,
Norwell
,
1998
), Vol. 24.
35.
L.
Bustamante
,
M.
Saeki
,
T.
Misaki
, and
M.
Matsukawa
, “
Effects of soft-tissue layer on shear wave velocity measurements in cortical bone tubes
,”
Jpn. J. Appl. Phys.
59
,
SKKB05
(
2020
).
36.
R. L.
Higdon
, “
Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation
,”
Math. Comput.
47
,
437
–459 (
1986
).
37.
R.
Courant
,
K.
Friedrichs
, and
H.
Lewy
, “
On the partial difference equations of mathematical physics
,”
IBM J. Res. Dev.
11
,
215
–234 (
1967
).
38.
P.
Laugier
and
G.
Haïat
,
Bone Quantitative Ultrasound
, 1st ed. (
Springer
,
Dordrecht
,
2011
), p.
468
.
39.
R. K.
Lirk
,
B.
Svensmark
,
L. P.
Ellegaard
, and
H. E.
Jensen
, “
Locomotive disorders associated with sow mortality in Danish pig herds
,”
J. Vet. Med. Ser. A
52
,
423
428
(
2005
).
You do not currently have access to this content.