Acoustics is a broad field of knowledge that extends branches all over the physics of wave phenomena, psychology, natural sciences, and engineering. It is taught, in general, as part of engineering, physics, or architecture programs, or even in graduate programs specialized in the theme. In Brazil, acoustics was taught in graduate programs, until the creation of Acoustical Engineering in 2009, at the Federal University of Santa Maria, an integral undergraduate program dedicated to acoustics, audio, and vibration (lasting ten semesters). This article presents its complete academic program, its creation process, and the professional establishment of the acoustical engineer. In the following, the program of study and subjects are elucidated and detailed, and the teaching methodologies used are also discussed. The program employs several active learning strategies, like project-based learning, aiming to transform abstract into concrete knowledge. The interaction of the university, the acoustical engineer, and society is also presented and clarified. The placement of graduates in fields and their workplaces are presented as outcomes. As a fundamental part of the engineer's formation, the infrastructure used, whether state-of-the-art or cost-effective equipment, is detailed in the context of teaching and research. Finally, some of the ongoing research projects of the students are described.

1.
R. B.
Lindsay
, “
Report to the National Science Foundation on Conference on Education in Acoustics
,”
J. Acoust. Soc. Am.
36
,
2241
2243
(
1964
).
2.
A.
Lawrence
, “
Education in architectural acoustics
,”
Appl. Acoust.
1
(
4
),
267
273
(
1968
).
3.
W. D.
Fonseca
,
P. H.
Mareze
,
F. R.
de Mello
, and
C. C.
da Fonseca
, “
Teaching acoustical beamforming via active learning
,” in
Proceedings of the 9th Berlin Beamforming Conference (BeBeC 2022)
, Berlin, Germany (July 9–10,
2022
).
4.
G.
Deboni
,
D.
Paixão
,
J. C.
Pereira
,
A. L.
Cassiminho
, and
W. D.
Fonseca
, “
Ensino da música para a Engenharia Acústica (“Teaching music for the Acoustical Engineering”)
, in
Proceedings of the XXVIII Meeting of the Brazilian Society of Acoustics—Sobrac 2018
, Porto Alegre, Brazil (October 3–5,
2018
).
5.
H. E.
Bass
, “
Research and education in physical acoustics at the University of Mississippi, USA
,”
Appl. Acoust.
41
(
3
),
285
293
(
1994
).
6.
G.
Comte-Bellot
, “
Teaching and research in acoustics at Ecole Centrale de Lyon (France)
,”
Appl. Acoust.
40
(
2
),
169
180
(
1993
).
7.
D. A.
Russell
and
D. O.
Ludwigsen
, “
Acoustic testing and modeling: An advanced undergraduate laboratory
,”
J. Acoust. Soc. Am.
131
(
3
),
2515
2524
(
2012
).
8.
T.
Arai
,
F.
Satoh
,
A.
Nishimura
,
K.
Ueno
, and
K.
Yoshihisa
, “
Demonstrations for education in acoustics in Japan
,”
Acoust. Sci. Technol.
27
(
6
),
344
348
(
2006
).
9.
L.
Moheit
,
J. D.
Schmid
,
J. M.
Schmid
,
M.
Eser
, and
S.
Marburg
, “
Acoustics apps: Interactive simulations for digital teaching and learning of acoustics
,”
J. Acoust. Soc. Am.
149
(
2
),
1175
1182
(
2021
).
10.
D. A.
Russell
, “
Creating interactive acoustics animations using Mathematica's Computable Document Format
,”
J. Acoust. Soc. Am.
133
(
5
),
3319
3319
(
2013
).
11.
A. B.
Albu
and
K.
Malakuti
, “
Work in progress—Problem-based learning in digital signal processing
,” in
Proceedings of the 2009 39th IEEE Frontiers in Education Conference
, San Antonio, TX (October 18–21,
2009
).
12.
T.
Arai
, “
Education in acoustics and speech science using vocal-tract models
,”
J. Acoust. Soc. Am.
131
(
3
),
2444
2454
(
2012
).
13.
J.
Llorca
,
E.
Redondo
, and
M.
Vorländer
, “
Learning room acoustics by design: A project-based experience
,”
Int. J. Eng. Educ.
35
(
1
),
417
423
(
2019
).
14.
Estadão
, “
Guia da Faculdade” (“Guide of Universities”)
, https://publicacoes.estadao.com.br/guia-da-faculdade/ (Last viewed July
2022
).
15.
UFSM Acoustical Engineering website available at https://www.eac.ufsm.br/ (Last viewed July
2022
).
16.
D. X.
da Paixão
and
W. D.
Fonseca
, “
A experiência do ensino de graduação em Engenharia Acústica no Brasil” (“The experience of undergraduate teaching in Acoustical Engineering in Brazil”)
, in
Proceedings of FIA 2018—XI Iberoamerican Congress of Acoustics; X Iberian Acoustic Congress; and 49th Spanish Acoustic Congress—TecniaAcustica'18
, Cadiz, Spain (October 24–26,
2018
).
17.
Acoustical Engineering syllabi available at https://www.ufsm.br/cursos/graduacao/santa-maria/engenharia-acustica/ (Last viewed July
2022
).
18.
M.
Prince
, “
Does active learning work? a review of the research
,”
J. Eng. Educ.
93
(
3
),
223
231
(
2004
).
19.
S.
Grabinger
and
J. C.
Dunlap
, “
Problem-based learning as an example of active learning and student engagement
,” in
Advances in Information Systems
, edited by
T.
Yakhno
(
Springer
,
Berlin, Germany
,
2002
), pp.
375
384
.
20.
T. B.
Neilsen
,
W. J.
Strong
,
B. E.
Anderson
,
K. L.
Gee
,
S. D.
Sommerfeldt
, and
T. W.
Leishman
, “
Creating an active-learning environment in an introductory acoustics course
,”
J. Acoust. Soc. Am.
131
(
3
),
2500
2509
(
2012
).
21.
R. M.
Felder
and
R.
Brent
, “
Active learning: An introduction
,”
ASQ Higher Educ. Brief.
2
(
4
),
1
5
(
2009
).
22.
W. D.
Fonseca
, “
Ensino ativo na Engenharia Acústica” (“Active learning in Acoustical Engineering”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2019
.
23.
E.
Brandão
and
W. D.
Fonseca
, “
Room acoustics teaching experiences at the Federal University of Santa Maria (UFSM)
,” in
Proceedings of the International Symposium on Room Acoustics—ISRA 2019
, Amsterdam, Netherlands (September 15–17,
2019
).
24.
J. R.
Savery
, “
Overview of problem-based learning: Definitions and distinctions
,”
Interdiscip. J. Probl. Based Learn.
1
(
1
),
9
–20 (
2006
).
25.
L. R. C.
Ribeiro
,
Aprendizagem Baseada em Problemas (PBL): Uma Experiência No Ensino Superior) (Problem-Based Learning (PBL): An Experience in Higher Education
(
EdUFSCar
,
São Carlos, Brazil
,
2008
), p.
151
.
26.
L. R.
de Camargo Ribeiro
, “
Electrical engineering students evaluate problem-based learning (PBL)
,”
Int. J. Electr. Eng. Educ.
45
(
2
),
152
161
(
2008
).
27.
E.
Ambikairajah
and
J.
Epps
, “
Project-based learning in digital signal processing: Development and experiences
,” in
Proceedings of the 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE)
, Sedona, AZ (January 4–7,
2011
), pp.
506
511
.
28.
B. H. P.
Murta
,
H.
Sette
,
P.
Mareze
,
J. A.
Cordioli
,
E.
Brandão
, and
W. D.
Fonseca
, “
Ajuste de modelos analíticos de microfone piezoelétrico a partir de modelos numéricos” (“Adjustment of piezoelectric microphone analytical models from numerical models
”), in
Proceedings of the 13th AES Brasil Audio Engineering Congress
, São Paulo, Brazil (May 17–19,
2016
).
29.
ABNT NBR 15575:2021
, “
Edificações habitacionais—Desempenho—Partes 1–6” (“Brazilian Association of Technical Standards—Residential buildings—Performance—Parts 1–6”)
(
Brazilian Association of Technical Standards
,
São Paulo, Brazil
,
2021
).
30.
Brazilian Society of Acoustics (Sobrac) website available at http://acustica.org.br (Last viewed July
2022
).
31.
International Noise Awareness Day (INAD) website available at https://noiseawareness.org (Last viewed July
2022
).
32.
INAD Brasil website available at http://www.inadbrasil.com (Last viewed July
2022
).
33.
I. C.
Kuniyoshi
,
W. D.
Fonseca
, and
S.
Paul
, “
Dia internacional de conscientização sobre o ruído – INAD brasil” (“International Noise Awareness Day: Brazilian branch”)
, in
Práticas Educativas em Saúde Auditiva: Nos Contextos Educacional, Ambiental e Ocupacional (Educational Practices in Hearing Health: Educational, Environmental, and Occupational Contexts)
,
Atena
,
Ponta Grossa, Brazil
(
2013
), pp.
138
152
.
34.
E.
Brandão
,
Acústica de Salas: Projeto e Modelagem (Room Acoustics: Design and Modeling)
, 1st ed. (
Blucher
,
São Paulo, Brazil
,
2016
), p.
655
.
35.
ISO 354:2003
, “
Measurement of sound absorption in a reverberation room
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2003
).
36.
ISO 3741:2010
, “
Acoustics—Determination of sound power levels and sound energy levels of noise sources using sound pressure—Precision methods for reverberation test rooms
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2010
).
37.
A. R.
da Silva
,
E.
Brandão
, and
S.
Paul
, “
Assessing the sound directivity of ducts based on time delay spectrometry
,”
Appl. Acoust.
74
(
11
),
1221
1225
(
2013
).
38.
ISO 10140-2:2021
. “
Acoustics—Laboratory measurement of sound insulation of building elements—Part 2: Measurement of airborne sound insulation
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2021
).
39.
ISO 10140-3:2021
. “
Acoustics—Laboratory measurement of sound insulation of building elements—Part 3: Measurement of impact sound insulation
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2021
).
40.
G.
Souza
, “
Análise do coeficiente de espalhamento em uma minicâmara reverberante” (“Scattering coefficient analysis in a small reverberant chamber”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2019
.
41.
D. R.
Carvalho
,
W. D.
Fonseca
,
J.
Hollebon
,
P. H.
Mareze
, and
F. M.
Fazi
, “
Head tracker using webcam for auralization
,” in
Proceedings of the 50th International Congress and Exposition on Noise Control Engineering—Internoise 2021
, Washington, DC (August 1–5,
2021
), pp.
5071
5082
.
42.
M.
Berzborn
,
R.
Bomhardt
,
J.
Klein
,
J.-G.
Richter
, and
M.
Vorländer
, “
The ITA-Toolbox: An open source MATLAB toolbox for acoustic measurements and signal processing
,” in
Proceedings of the 43rd Annual German Congress on Acoustics
, Kiel, Germany (March 6–9,
2017
), pp.
222
225
.
43.
E.
Brandão
,
R. D.
Fiume
,
G.
Morgado
,
W. D.
Fonseca
, and
P.
Mareze
, “
A ray tracing algorithm developed at the acoustical engineering course of UFSM in Brazil
,” in
Proceedings of the 23rd International Congress on Acoustics—ICA 2019 (Integrating 4th EAA Euroregio 2019)
, Aachen, Germany (September 9–13,
2019
), pp.
4638
4645
.
44.
E.
Brandão
,
G.
Morgado
, and
W. D.
Fonseca
, “
A ray tracing engine integrated with blender and with uncertainty estimation: Description and initial results
,”
Build. Acoust.
28
(
2
),
99
118
(
2021
).
45.
For information on GitHub repositories, see “
Acoustical engineering GitHub repositories
,” https://github.com/eac-ufsm (Last viewed July
2022
).
46.
B. G.
Neto
,
I.
Pereira
,
S.
Futatsugic
,
E.
Brandão
,
P. H.
Mareze
, and
W. D.
Fonseca
, “
Experimental analysis of the dispersion in the measurement of the absorption coefficient with the impedance tube
,” in
Proceedings of the International Congress and Exposition on Noise Control Engineering—Internoise
, Chicago, IL (August 26–29,
2018
), pp.
6117
6127
.
47.
BS EN ISO 10534-2:2001
. “
Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2001
).
48.
ASTM E2611-19
. “
Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method
” (
ASTM International
,
West Conshohocken, PA
,
2019
).
49.
ISO 9053-2:2020
. “
Acoustics—Determination of airflow resistance—Part 2: Alternating airflow method
” (
International Organization for Standardization
,
Geneva, Switzerland
,
2021
).
50.
R.
Panneton
and
E.
Gros
, “
A missing mass method to measure the open porosity of porous solids
,”
Acta Acust. United Acust.
91
(
2
),
342
348
(
2005
).
51.
F.
Fohr
,
D.
Parmentier
,
B. R.
Castagnede
, and
M.
Henry
, “
An alternative and industrial method using low frequency ultrasound enabling to measure quickly tortuosity and viscous characteristic length
,”
J. Acoust. Soc. Am.
123
(
5
),
3118
(
2008
).
52.
T.
Pritz
, “
Dynamic Young's modulus and loss factor of plastic foams for impact sound isolation
,”
J. Sound Vib.
178
(
3
),
315
322
(
1994
).
53.
M.
Nolan
, “
Estimation of angle-dependent absorption coefficients from spatially distributed in situ measurements
,”
J. Acoust. Soc. Am.
147
(
2
),
EL119
EL124
(
2020
).
54.
A.
Richard
,
E.
Fernandez-Grande
,
J.
Brunskog
, and
C.-H.
Jeong
, “
Estimation of surface impedance at oblique incidence based on sparse array processing
,”
J. Acoust. Soc. Am.
141
(
6
),
4115
4125
(
2017
).
55.
A.
Richard
,
D.
Fernández Comesaña
,
J.
Brunskog
,
C.-H.
Jeong
, and
E.
Fernandez-Grande
, “
Characterization of sound scattering using near-field pressure and particle velocity measurements
,”
J. Acoust. Soc. Am.
146
(
4
),
2404
2414
(
2019
).
56.
M.
Nolan
,
S. A.
Verburg
,
J.
Brunskog
, and
E.
Fernandez-Grande
, “
Experimental characterization of the sound field in a reverberation room
,”
J. Acoust. Soc. Am.
145
(
4
),
2237
2246
(
2019
).
57.
D. H.
Johnson
and
D. E.
Dudgeon
,
Array Signal Processing: Concepts and Techniques
(
Pearson
,
London
,
1993
), p.
552
.
58.
W. D.
Fonseca
, “
Beamforming considerando difração acústica em superfícies cilíndricas” (“Beamforming considering acoustic diffraction over cylindrical surfaces”)
, Ph.D. thesis,
Federal University of Santa Catarina (UFSC)
,
Florianópolis, Brazil
,
2013
, pp.
23
70
.
59.
L.
Gomes
, “
Técnicas de de imageamento acústico via beamforming para fontes sonoras em movimento” (“Acoustic imaging techniques via beamforming for moving sound sources”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2022
.
60.
W. D.
Fonseca
, “
Desenvolvimento e aplicação de sistema para obtenção de imagens acústicas pelo método do beamforming para fontes em movimento” (“Development and application of a system for obtaining acoustic images using the beamforming methods for moving sources”)
, master's thesis,
Federal University of Santa Catarina (UFSM)
,
Florianópolis, Brazil
,
2009
.
61.
F.
Meng
,
G.
Behler
, and
M.
Vorländer
, “
A synthesis model for a moving sound source based on beamforming
,”
Acta Acust. United Acust.
104
(
2
),
351
362
(
2018
).
62.
T. M.
Sanchez
, “
Construção de um protótipo simplificado de fonte sonora rotativa e medição utilizando princípios da norma IEC 61400-11 e imageamento sonoro via beamforming” (“Construction of a simplified prototype of a rotating sound source and measurement using the principles of the IEC 61400-11 standard and acoustic imaging via beamforming”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2021
.
63.
G.
Herold
, “
One ring to find them all: Detection and separation of rotating acoustic features with circular microphone arrays
,” Ph.D. thesis,
Technical University of Berlin
,
Berlin, Germany
,
2021
.
64.
W. D.
Fonseca
and
J. P.
Ristow
, “
Localização tridimensional de alvos com arranjo cilíndrico de hidrofones por meio do beamforming considerando o campo difratado” (“Three-dimensional location of targets with cylindrical hydrophone array using beamforming considering the diffracted field”)
, in
Proceedings of the XII Meeting on Underwater Acoustics Technology (XII ETAS)
, Rio de Janeiro, Brazil (November 8–10,
2016
).
65.
F. R.
de Mello
,
W. D.
Fonseca
, and
P. H.
Mareze
, “
MEMS digital microphone and Arduino compatible microcontroller: An embedded system for noise monitoring
,” in
Proceedings of the 50th International Congress and Exposition on Noise Control Engineering—Internoise 2021
, Washington, DC (August 1–5,
2021
). pp.
3921
3932
.
66.
F. R.
de Mello
, “
Microfones MEMS digitais: Aplicações biauricular e de um canal com microcontrolador Teensy” (“Digital MEMS microphones: Binaural and single-channel applications with Teensy microcontroller”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2022
.
67.
W. D.
Fonseca
,
A. Z.
Leão
,
P.
Mareze
, and
E.
Brandão
, “
Audio signal conditioning circuits for Arduino platforms
,” in
Proceedings of the 44th German Annual Conference on Acoustics—DAGA 2018
, Munich, Germany (March 19–23,
2018
).
68.
E.
Bom
, “
Desenvolvimento de cadeia de medição e reprodução biauricular utilizando dispositivo de rastreamento da cabeça” (“Development of binaural measurement and reproduction chains using a head tracking device”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2018
.
69.
E.
Bom
,
W. D.
Fonseca
,
E.
Brandão
, and
P.
Mareze
, “
Dispositivo rastreador de movimentos da cabeça baseado em Arduino: Construção e utilização em acústica” (“Arduino-based head tracker: Construction and use in acoustics”)
,
Acústica Vibrações
34
(
50
),
5
24
(
2018
).
70.
A.
Zorzo
,
W. D.
Fonseca
,
P.
Mareze
, and
E.
Brandão
, “
Comparison between a digital and an analog active noise control system for headphones
,” in
11th European Congress and Exposition on Noise Control Engineering—Euronoise
, Crete, Greece (May 27–31,
2018
), pp.
907
914
.
71.
A.
Zorzo
and
W. D.
Fonseca
, “
Estudo da técnica de identificação de sistemas implementada em microcontroladores Arduino Due e Teensy 3.6” (“Study of the system identification technique implemented in Arduino Due and Teensy 3.6 microcontrollers”)
,
Acústica Vibrações
33
(
49
),
5
14
(
2017
).
72.
W. D.
Fonseca
,
L.
Jacomussi
, and
P. H.
Mareze
, “
Raspberry Pi: A low-cost embedded system for sound pressure level measurement
,” in
Proceedings of the International Congress and Exposition on Noise Control Engineering—Internoise 2020
, Seoul, Korea (August 23–26,
2020
).
73.
J. D.
Campos
and
W. D.
Fonseca
, “
Portable digital audio synthesizer assembly with open-source software
,”
Proc. Inst. Acoust.
42
,
1
12
(
2020
).
74.
B.
Circe
,
W. D.
Fonseca
,
L.
Jacomussi
, and
P. H.
Mareze
, “
Tutorial: Configuração de dispositivos de áudio no Raspberry Pi—Partes 1 & 2 (“Tutorial: Configuring audio devices on the Raspberry Pi—Parts 1 & 2”)
, in
Proceedings of Acústica 2020 (XI Iberian Conference on Acoustics, Tecniacústica 2020, and 51st Spanish Conference on Acoustics)
, Faro, Portugal (October 21–23,
2020
), pp.
1
12
.
75.
E. M.
Viera
, “
Desenvolvimento de câmara anecoica para medição de direcionalidade sonora de um conversor eletrônico” (“Development of an anechoic chamber for measuring the sound directionality of an electronic converter”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2021
.
76.
E.
Brandão
,
A.
Lenzi
, and
J.
Cordioli
, “
Estimation and minimization of errors caused by sample size effect in the measurement of the normal absorption coefficient of a locally reactive surface
,”
Appl. Acoust.
73
(
6
),
543
556
(
2012
).
77.
E.
Brandão
and
E.
Fernandez-Grande
, “
Influence of edge direction on the in situ measurement of impedance using microphone arrays
,” in
Proceedings of the International Congress and Exposition on Noise Control Engineering—Internoise 2020
, Seoul, Korea (August 23–26,
2020
), pp.
525
536
.
78.
E.
Zea
,
E.
Brandão
,
M.
Nolan
,
J.
Andén
,
J.
Cuenca
, and
U. P.
Svensson
, “
Learning the finite size effect for in situ absorption measurement
,” in
Proceedings of Euronoise
, Madeira, Portugal (October 25–27,
2021
).
79.
M.
Pereira
,
P. H.
Mareze
,
L.
Godinho
,
P.
Amado-Mendes
, and
J.
Ramis
, “
Proposal of numerical models to predict the diffuse field sound absorption of finite sized porous materials—BEM and FEM approaches
,”
Appl. Acoust.
180
,
108092
(
2021
).
80.
A.
Piccini
, “
Revisão bibliográfica e implementação computacional do método dos elementos finitos para acústica e vibrações (“Bibliographic review and computational implementation of the finite element method for acoustics and vibrations”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2022
.
81.
N.
Atalla
and
F.
Sgard
,
Finite Element and Boundary Methods in Structural Acoustics and Vibration
(
CRC
,
Boca Raton, FL
,
2015
), p.
470
.
82.
L. A. T.
Alvim
, “
Uma implementação de código aberto dos métodos de elementos finitos e contorno em Python para problemas de acústica de salas e difração sonora (“An open-source implementation of the finite and boundary element methods in Python for room acoustics and diffraction problems”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2022
.
83.
L. M.
Gomes
,
W. D.
Fonseca
,
D. R.
Carvalho
, and
P.
Mareze
, “
Rendering binaural signals for moving sources
,”
Proc. Inst. Acoust.
42
,
1
12
(
2020
).
84.
D.
Carvalho
, “
Individualização de funções de transferência relacionadas à cabeça a partir de antropometria e redes neurais artificiais” (“Individualization of HRTFs via anthropometry and artificial neural networks”)
, bachelor's thesis,
Federal University of Santa Maria (UFSM)
,
Santa Maria, Brazil
,
2022
.
85.
W. D.
Fonseca
,
F. R.
de Mello
,
D. R.
Carvalho
,
P. H.
Mareze
, and
O. M.
Silva
, “
Measurement of car cabin binaural impulse responses and auralization via convolution
,” in
Proceedings of the International Conference on Immersive and 3D Audio—I3DA
, Bologna, Italy (September 8–10,
2021
).
86.
B.
Sanches Masiero
, “
Individualized binaural technology: Measurement, equalization and perceptual evaluation
,” Ph.D. thesis,
RWTH Aachen University
,
Aachen, Germany
,
2012
.
87.
Information about SOFA files may be found at “
SOFA (spatially oriented format for acoustics)
,” https://www.sofaconventions.org/ (Last viewed July
2022
).
You do not currently have access to this content.