The consensus in piano tuning philosophy explains the stretched tuning scale by the inharmonicity of piano strings. This study aimed to examine how variable inharmonicity influences the result of the piano tuning process, compare the tuning curves of aurally tuned pianos with the curves derived from subjective octave enlargement experiments, and evaluate whether the pitches of inharmonic or harmonic versions of the same tone are perceived differently. In addition, the influence of strings of other piano keys on the measured inharmonicity of a single piano string was investigated. The inharmonicity of all individual strings was measured on a Steinway D grand piano. Variable inharmonicity was implemented by additive synthesis with frequency-adjusted sinusoidal partials. Fifteen piano tuners and 18 orchestra musicians participated in the experiments. The results indicate that the inharmonic piano tones produced a keyboard tuning curve similar to the Railsback curve and differed significantly from the harmonic counterpart. The inharmonic tuning curve was reminiscent of the subjective octave enlargement curve. Inharmonic tone pitches were perceived to be higher than harmonic tones up to C7. The covibrating strings of the other keys did not exhibit any meaningful effect on the measured inharmonicity of a single string of the played key.

1.
Adler
,
S.
(
2002
).
The Study of Orchestration
(
W.W. Norton
,
New York
),
p.
864
.
2.
Anderson
,
B. E.
, and
Strong
,
W. J.
(
2005
). “
The effect of inharmonic partials on pitch of piano tones
,”
J. Acoust. Soc. Am.
117
(
5
),
3268
3272
.
3.
Bachem
,
A.
(
1948
). “
Chroma fixation at the ends of the musical frequency scale
,”
J. Acoust. Soc. Am.
20
(
5
),
704
705
.
4.
Dobbins
,
P. A.
, and
Cuddy
,
L. L.
(
1982
). “
Octave discrimination: An experimental confirmation of the ‘stretched’ subjective octave
,”
J. Acoust. Soc. Am.
72
(
2
),
411
415
.
5.
Fletcher
,
H.
(
1964
). “
Normal Vibration Frequencies of a Stiff Piano String
,”
J. Acoust. Soc. Am.
36
(
1
),
203
209
.
6.
Giordano
,
N.
(
2015
). “
Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance
,”
J. Acoust. Soc. Am.
138
(
4
),
2359
2366
.
7.
Hartmann
,
W.
(
1993
). “
On the origin of the enlarged melodic octave
,”
J. Acoust. Soc. Am.
93
(
6
),
3400
3409
.
8.
Jaatinen
,
J.
,
Pätynen
,
J.
, and
Alho
,
K.
(
2019
). “
Octave stretching phenomenon with complex tones of orchestral instruments
,”
J. Acoust. Soc. Am.
146
(
5
),
3203
3214
.
9.
Jaatinen
,
J.
,
Pätynen
,
J.
, and
Lokki
,
T.
(
2021
). “
Uncertainty in tuning evaluation with low-register complex tones of orchestra instruments
,”
Acta Acust.
5
,
49
.
10.
Jackson
,
H. M.
, and
Moore
,
B. C. J.
(
2013
). “
The dominant region for the pitch of complex tones with low fundamental frequencies
,”
J. Acoust. Soc. Am.
134
(
2
),
1193
1204
.
11.
Järveläinen
,
H.
,
Verma
,
T.
, and
Välimäki
,
V.
(
2002
). “
Perception and adjustment of pitch in inharmonic string instrument tones
,”
J. New Music Res.
31
(
4
),
311
319
.
12.
Jorgensen
,
O.
(
1991
).
Tuning: Containing the Perfection of Eighteenth-Century Temperament, the Lost Art of Nineteenth-Century Temperament, and the Science of Equal Temperament
(
Michigan State University Press
,
East Lansing, MI
), pp.
739
745
.
13.
Lattard
,
J.
(
1993
). “
Influence of inharmonicity on the tuning of a piano—Measurements and mathematical simulation
,”
J. Acoust. Soc. Am.
94
(
1
),
46
53
.
14.
Martin
,
D.
, and
Ward
,
W.
(
1961
). “
Subjective evaluation of musical scale temperament in pianos
,”
J. Acoust. Soc. Am.
33
(
5
),
582
585
.
15.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
, and
Peters
,
R. W.
(
1985
). “
Relative dominance of individual partials in determining the pitch of complex tones
,”
J. Acoust. Soc. Am.
77
(
5
),
1853
1860
.
16.
Railsback
,
O. L.
(
1937
). “
A chromatic stroboscope
,”
J. Acoust. Soc. Am.
9
,
37
42
.
17.
Railsback
,
O. L.
(
1938a
). “
A study of the tuning of pianos
,”
J. Acoust. Soc. Am.
10
,
86
.
18.
Railsback
,
O.
(
1938b
). “
Scale temperament as applied to piano tuning
,”
J. Acoust. Soc. Am.
9
(
3
),
274
.
19.
Rasch
,
R. A.
, and
Heetvelt
,
V.
(
1985
). “
String inharmonicity and piano tuning, music perception
,”
An. Interdiscip. J.
3
(
2
),
171
189
.
20.
Rauhala
,
J.
,
Lehtonen
,
H.-M.
, and
Välimäki
,
V.
(
2007
). “
Fast automatic inharmonicity estimation algorithm
,”
J. Acoust. Soc. Am.
121
(
5
),
EL184
EL189
.
21.
Rigaud
,
F.
,
David
,
B.
, and
Daudet
,
L.
(
2013
). “
A parametric model and estimation techniques for the inharmonicity and tuning of the piano
,”
J. Acoust. Soc. Am.
133
(
5
),
3107
3118
.
22.
Rose
,
N. L.
,
Yang
,
H.
,
Turner
,
S. D.
, and
Simpson
,
G. L.
(
2012
). “
An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK
,”
Geochimica et Cosmochimica Acta
82
,
113
135
.
23.
Rosner
,
B.
(
1999
). “
Stretching and compression in the perception of musical intervals
,”
Music Percept.
17
(
1
),
101
114
.
24.
Schuck
,
O.
, and
Young
,
R.
(
1943
). “
Observations on the vibrations of piano strings
,”
J. Acoust. Soc. Am
15
(
1
),
1
11
.
25.
Semal
,
C.
, and
Demany
,
L.
(
1994
). “
The upper limit of musical pitch
,”
Music Percept.
12
(
2
),
165
175
.
26.
Shah
,
S.
, and
Välimäki
,
V.
(
2020
). “
Automatic tuning of high piano tones
,”
Appl. Sci.
10
(
6
),
1983
.
27.
Sundberg
,
J.
(
1991
).
The Science of Musical Sounds (Cognition and Perception
) (
Academic Press
,
San Diego, CA
), p.
274
.
28.
Sundberg
,
J. E.
, and
Lindqvist
,
J.
(
1973
). “
Musical octaves and pitch
,”
J. Acoust. Soc. Am.
54
,
922
929
.
29.
Suzuki
,
Y.
, and
Takeshima
,
H.
(
2004
). “
Equal-loudness-level contours for pure tones
,”
J. Acoust. Soc. Am.
116
(
2
),
918
933
.
30.
Terhardt
,
E.
(
1971
). “
Die tonhöhe harmonischer klange und das oktavintervall (The pitch of harmonic tones and the octave interval)
,”
Acustica
24
,
126
136
31.
Terhardt
,
E.
, and
Zick
,
M.
(
1975
). “
Evaluation of the tempered tone scale in normal, stretched, and contracted intonation
,”
Acustica
32
,
268
274
.
32.
Tuovinen
,
J.
,
Hu
,
J.
, and
Välimäki
,
V.
(
2019
). “
Toward automatic tuning of the piano
,” in
Proceedings of the 16th Sound & Music Computing Conference SMC 2019
,
May 28–31
,
Malaga, Spain
.
33.
Verschooten
,
E.
,
Shamma
,
S.
,
Oxenham
,
A. J.
,
Moore
,
B. C.
,
Joris
,
P. X.
,
Heinz
,
M. G.
, and
Plack
,
C. J.
(
2019
). “
The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints
,”
Hear. Res.
377
,
109
121
.
34.
Walliser
,
K.
(
1969
). “
Über die Spreizung von empfundenen intervallen gegenüber matematisch harmonischen intervallen bei sinustönen (On the spread of perceived intervals with respect to mathematic harmonic intervals in sinusoidal tones)
,”
Frequenz
23
,
139
143
.
35.
Ward
,
W.
(
1954
). “
Subjective musical pitch
,”
J. Acoust. Soc. Am.
26
(
3
),
369
380
.
36.
Wood
,
S. N.
(
2017
).
Generalized Additive Models: An Introduction with R
(
CRC Press
,
Boca Raton, FL
).
37.
Young
,
R. W.
(
1952
). “
Inharmonicity of plain wire piano strings
,”
J. Acoust. Soc. Am.
24
(
3
),
267
273
.
38.
Zhou
,
Y.
,
Wu
,
Z.
, and
Wu
,
Y.
(
2021
). “
Intelligent permanent magnet motor-based servo drive system used for automated tuning of piano
,”
Energies
14
(
20
),
6627
.
You do not currently have access to this content.