A model-based analysis of sound transmission in a deep ice-covered Arctic ocean recorded during the Ice Experiment 2014 is presented. A source of opportunity transmitted mid-frequency (3500 Hz) 5 s duration continuous wave pulses. The source and receiver were omnidirectional, located under ice at a ∼30 m depth at a ∼719 m distance from each other. Recorded acoustic intensity time series showed a clear direct blast signal followed by an about 30 s duration reverberation coda. The model considers several types of arrivals contributing to the received signal at different time intervals. The direct signal, corresponding to a short-range nearly horizontal propagation, is strongly affected by the presence of a weak near-surface (within 50 m depth) acoustic channel. Reverberation coda that follows the direct signal corresponds to medium-range bottom- and ice-bounced arrivals from steep angles which are controlled by reflectivity and scattering strengths of ice and bottom, their physical properties, and acoustical parameters.

1.
Ainslie
,
M.
,
Ellis
,
D.
, and
Harrison
,
C.
(
2016
). “
Low frequency bottom reverberation in a Pekeris waveguide with Lambert rule
,”
J. Comput. Acoust.
24
(
2
),
1650001
.
2.
Brekhovskikh
,
L. M.
(
1980
).
Waves in Layered Media
(
Academy Press
,
New York
),
264 pp.
3.
Brekhovskikh
,
L. M.
, and
Lysanov
,
Y.
(
2003
).
Fundamentals of Ocean Acoustics
(
Springer
,
Berlin
), 278 pp.
4.
Chotiros
,
N. P.
,
Hope
,
G.
,
Storheim
,
E.
,
Hobaek
,
H.
,
Freitag
,
L.
, and
Sagen
,
H.
(
2021
). “
Inversion of surficial sediment thickness from under-ice acoustic transmission measurement
,”
J. Acoust. Soc. Am.
149
(
1
),
371
385
.
5.
Collins
,
M.
(
1999
). “
User's Guide for RAM Versions 1.0 and 1.0p
,” http://staff.washington.edu/dushaw/AcousticsCode/ram.pdf (Last viewed 8/9/2022).
6.
Ellis
,
D.
, and
Crowe
,
V.
(
1991
). “
Bistatic reverberation calculations using a three-dimensional scattering function
,”
J. Acoust. Soc. Am.
89
(
5
),
2207
2214
.
7.
Frank
,
S. D.
, and
Ivakin
,
A. N.
(
2018a
). “
Long-range reverberation in an Arctic environment: Effects of ice thickness and elasticity
,”
J. Acoust. Soc. Am.
143
(
3
),
EL167
EL173
.
8.
Frank
,
S. D.
, and
Ivakin
,
A. N.
(
2018b
). “
Low-frequency reverberation estimates based on elastic parabolic equation solutions for free-surface and ice-covered Arctic environments
,”
Proc. Mtgs. Acoust.
35
,
005003
.
9.
Hope
,
G.
,
Sagen
,
H.
,
Storheim
,
E.
,
Hobæk
,
H.
, and
Freitag
,
L.
(
2017
). “
Measured and modeled acoustic propagation underneath the rough arctic sea-ice
,”
J. Acoust. Soc. Am.
142
(
3
),
1619
1633
.
10.
Howe
,
B. M.
,
Miksis-Olds
,
J.
,
Rehm
,
E.
,
Sagen
,
H.
,
Worcester
,
P. F.
, and
Haralabus
,
G.
(
2019
). “
Observing the oceans acoustically
,”
Front. Mar. Sci.
6
,
1
22
.
11.
Ivakin
,
A. N.
, and
Williams
,
K. L.
(
2020
). “
Mid-frequency propagation and reverberation in a deep ice-covered ocean: Modeling and data analysis
,”
Proc. Mtgs. Acoust.
42
,
070004
.
12.
Jackson
,
D. R.
,
Odom
,
R. I.
,
Boyd
,
M. L.
, and
Ivakin
,
A. N.
(
2010
). “
A geoacoustic bottom interaction model (GABIM)
,”
IEEE J. Ocean. Eng.
35
(
3
),
603
617
.
13.
Jackson
,
D. R.
, and
Richardson
,
M. D.
(
2007
).
High-Frequency Seafloor Acoustics
(
Springer
,
New York
), 616 pp.
14.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
(
2011
).
Computational Ocean Acoustics
, (
Springer
,
New York
), 794 pp.
15.
McCammon
,
D. F.
, and
McDaniel
,
S. T.
(
1985
). “
The influence of the physical properties of ice on reflectivity
,”
J. Acoust. Soc. Am.
77
(
2
),
499
507
.
23.
Urick
,
R. J.
(
1960
). “
Side scattering of sound in shallow water
,”
J. Acoust. Soc. Am.
32
(
3
),
351
355
.
24.
Urick
,
R. J.
(
1970
). “
Reverberation-derived scattering strength of the shallow sea bed
,”
J. Acoust. Soc. Am.
48
(
1, Pt. 2
),
392
397
.
16.
Williams
,
K. L.
(
2001
). “
An effective density fluid model for acoustic propagation in sediments derived from Biot theory
,”
J. Acoust. Soc. Am.
110
(
5
),
2276
2281
.
17.
Williams
,
K. L.
,
Boyd
,
M. L.
,
Soloway
,
A. G.
,
Thorsos
,
E. I.
,
Kargl
,
S. G.
, and
Odom
,
R. I.
(
2018
). “
Noise background levels and noise event tracking/characterization under the Arctic ice pack: Experiment, data analysis and modeling
,”
IEEE J. Ocean. Eng.
43
(
1
),
145
159
.
18.
Williams
,
K. L.
, and
Francois
,
R. E.
(
1992
). “
Sea ice elastic moduli: Determination of Biot parameters using in-field velocity measurements
,”
J. Acoust. Soc. Am.
91
(
5
),
2627
2636
.
19.
Williams
,
K. L.
, and
Jackson
,
D. R.
(
1998
). “
Bistatic bottom scattering: Model, experiments, and model/data comparison
,”
J. Acoust. Soc. Am.
103
(
1
),
169
181
.
20.
Worcester
,
P. F.
,
Dzieciuch
,
M. A.
, and
Sagen
,
H.
(
2020
). “
Ocean acoustics in the rapidly changing Arctic
,”
Acoust. Today
16
(
1
),
55
63
.
21.
Yang
,
T. C.
, and
Hayward
,
T. J.
(
1993
). “
Low-frequency Arctic reverberation. III: Measurements of ice and bottom backscattering strengths from medium-range bottom-bounce returns
,”
J. Acoust. Soc. Am.
94
(
2
),
1003
1014
.
22.
Zou
,
Z.
, and
Zhang
,
L.
(
2021
). “
Enhancing low-frequency water-column acoustic reflections in marine multichannel seismic data for seismic oceanography
,”
J. Acoust. Soc. Am.
150
(
5
),
3852
3860
.
You do not currently have access to this content.