The effects of age and mild hearing loss over the extended high-frequency (EHF) range from 9000 to 16 000 Hz on speech perception and auditory stream segregation were assessed using four groups: (1) young with normal hearing threshold levels (HTLs) over both the conventional and EHF range; (2) older with audiograms matched to those for group 1; (3) young with normal HTLs over the conventional frequency range and elevated HTLs over the EHF range; (4) older with audiograms matched to those for group 3. For speech in quiet, speech recognition thresholds and speech identification scores did not differ significantly across groups. For monosyllables in noise, both greater age and hearing loss over the EHF range adversely affected performance, but the effect of age was much larger than the effect of hearing status. Stream segregation was assessed using a rapid sequence of vowel stimuli differing in fundamental frequency (F0). Larger differences in F0 were required for stream segregation for the two groups with impaired hearing in the EHF range, but there was no significant effect of age. It is argued that impaired hearing in the EHF range is associated with impaired auditory function at lower frequencies, despite normal audiometric thresholds at those frequencies.

1.
Ahmed
,
H. O.
,
Dennis
,
J. H.
,
Badran
,
O.
,
Ismail
,
M.
,
Ballal
,
S. G.
,
Ashoor
,
A.
, and
Jerwood
,
D.
(
2001
). “
High‐frequency (10–18 kHz) hearing thresholds: Reliability, and effects of age and occupational noise exposure
,”
Occup. Med.
51
,
245
258
.
2.
Alain
,
C.
,
Dyson
,
B. J.
, and
Snyder
,
J. S.
(
2006
). “
Aging and the perceptual organization of sounds: A change of scene
?,” in
Handbook of Models for Human Aging
, edited by
P. M.
Conn
(
Academic Press
,
New York
), pp.
759
769
.
3.
Alain
,
C.
,
Ogawa
,
K. H.
, and
Woods
,
D. L.
(
1996
). “
Aging and the segregation of auditory stimulus sequences
,”
J. Gerontol. B. Psychol. Sci. Soc. Sci.
51B
,
P91
P93
.
4.
American Speech-Language-Hearing Association
(
1988
). “
Determining threshold level for speech (No. GL1988-00008)
,”
ASHA
30
,
85
89
.
5.
ANSI
(
2009
). S3.21,
Methods for Manual Pure-Tone Threshold Audiometry
(
American National Standards Institute
,
Melville, NY
).
6.
ANSI
(
2013
).
S3.1
,
Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms
(
American National Standards Institute
,
Melville, NY
).
7.
Ashihara
,
K.
(
2007
). “
Hearing thresholds for pure tones above 16 kHz
,”
J. Acoust. Soc. Am.
122
,
EL52
EL57
.
8.
Assmann
,
P. F.
, and
Summerfield
,
Q.
(
1990
). “
Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies
,”
J. Acoust. Soc. Am.
88
,
680
697
.
9.
Badri
,
R.
,
Siegel
,
J. H.
, and
Wright
,
B. A.
(
2011
). “
Auditory filter shapes and high-frequency hearing in adults who have impaired speech in noise performance despite clinically normal audiograms
,”
J. Acoust. Soc. Am.
129
,
852
863
.
10.
Beauvois
,
M. W.
, and
Meddis
,
R.
(
1996
). “
Computer simulation of auditory stream segregation in alternating‐tone sequences
,”
J. Acoust. Soc. Am.
99
,
2270
2280
.
11.
Bertoli
,
S.
,
Smurzynski
,
J.
, and
Probst
,
R.
(
2005
). “
Effects of age, age-related hearing loss, and contralateral cafeteria noise on the discrimination of small frequency changes: Psychoacoustic and electrophysiological measures
,”
J. Assoc. Res Otolaryngol.
6
,
207
222
.
12.
Bologna
,
W. J.
,
Vaden
,
K. I.
, Jr.
,
Ahlstrom
,
J. B.
, and
Dubno
,
J. R.
(
2018
). “
Age effects on perceptual organization of speech: Contributions of glimpsing, phonemic restoration, and speech segregation
,”
J. Acoust. Soc. Am.
144
,
267
281
.
13.
Bregman
,
A. S.
(
1990a
).
Auditory Scene Analysis: The Perceptual Organization of Sound
(
The MIT Press
,
Cambridge, MA
), p.
790
.
14.
Bregman
,
A. S.
(
1990b
). “
Sequential integration
,” in
Auditory Scene Analysis: The Perceptual Organization of Sound
(
The MIT Press
,
Cambridge, MA
), pp.
47
184
.
15.
Bregman
,
A. S.
,
Ahad
,
P. A.
,
Crum
,
P. A. C.
, and
O'Reilly
,
J.
(
2000
). “
Effects of time intervals and tone durations on auditory stream segregation
,”
Percept. Psychophys.
62
,
626
636
.
82.
Carhart
,
R.
, and
Jerger
,
J.
(
1959
). “
Preferred method for clinical determination of pure-tone thresholds
,”
J. Speech Hear. Disord.
24
,
330
345
.
16.
Chen
,
Z.
,
Hu
,
G.
,
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
2011
). “
A new method of calculating auditory excitation patterns and loudness for steady sounds
,”
Hear. Res.
282
,
204
215
.
17.
Crandall
,
I. B.
, and
MacKenzie
,
D.
(
1922
). “
Analysis of the energy distribution in speech
,”
Phys. Rev.
19
,
221
232
.
18.
Dallos
,
P.
, and
Harris
,
D.
(
1978
). “
Properties of auditory nerve responses in absence of outer hair cells
,”
J. Neurophysiol.
41
,
365
383
.
19.
David
,
M.
,
Tausend
,
A. N.
,
Strelcyk
,
O.
, and
Oxenham
,
A. J.
(
2018
). “
Effect of age and hearing loss on auditory stream segregation of speech sounds
,”
Hear. Res.
364
,
118
128
.
20.
Dubno
,
J. R.
,
Eckert
,
M. A.
,
Lee
,
F.-S.
,
Matthews
,
L. J.
, and
Schmiedt
,
R. A.
(
2013
). “
Classifying human audiometric phenotypes of age-related hearing loss from animal models
,”
J. Assoc. Res Otolaryngol.
14
,
687
701
.
21.
Evans
,
E. F.
, and
Harrison
,
R. V.
(
1976
). “
Proceedings: Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea-pig
,”
J. Physiol.
256
,
43
44
.
22.
Ezzatian
,
P.
,
Li
,
L.
,
Pichora-Fuller
,
K.
, and
Schneider
,
B. A.
(
2015
). “
Delayed stream segregation in older adults: More than just informational masking
,”
Ear. Hear.
36
,
482
484
.
23.
Farahani
,
A.
,
Farahani
,
S.
,
Rouhbakhsh
,
N.
,
Zamiri
,
F.
, and
Bolandi
,
M.
(
2019
). “
Investigating the effect of extended high-frequency hearing loss on duration pattern sequence test
,”
Audit. Vestib. Res.
28
,
43
44
.
24.
Fletcher
,
H.
, and
Galt
,
R. H.
(
1950
). “
The perception of speech and its relation to telephony
,”
J. Acoust. Soc. Am.
22
,
89
151
.
25.
Fletcher
,
H.
, and
Steinberg
,
J. C.
(
1929
). “
Articulation testing methods
,”
Bell. Syst. Technol. J.
8
,
806
854
.
26.
Füllgrabe
,
C.
,
Moore
,
B. C. J.
, and
Stone
,
M. A.
(
2015
). “
Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition
,”
Front. Aging Neurosci.
6
,
347
.
27.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
,
103
138
.
28.
Gockel
,
H.
,
Carlyon
,
R. P.
, and
Micheyl
,
C.
(
1999
). “
Context dependence of fundamental-frequency discrimination: Lateralized temporal fringes
,”
J. Acoust. Soc. Am.
106
,
3553
3563
.
29.
Grimault
,
N.
,
Micheyl
,
C.
,
Carlyon
,
R. P.
,
Arthaud
,
P.
, and
Collet
,
L.
(
2001
). “
Perceptual auditory stream segregation of sequences of complex sounds in subjects with normal and impaired hearing
,”
Br. J. Audiol.
35
,
173
182
.
30.
Harrison
,
R. V.
, and
Evans
,
E. F.
(
1979
). “
Cochlear fibre responses in guinea pigs with well defined cochlear lesions
,”
Scand. Audiol. Suppl.
9
,
83
92
.
31.
Haywood
,
N. R.
, and
Roberts
,
B.
(
2011
). “
Effects of inducer continuity on auditory stream segregation: Comparison of physical and perceived continuity in different contexts
,”
J. Acoust. Soc. Am.
130
,
2917
2927
.
32.
Heinrich
,
A.
(
2021
). “
The role of cognition for speech-in-noise perception: Considering individual listening strategies related to aging and hearing loss
,”
Int. J. Behav. Dev.
45
,
382
388
.
33.
Hillenbrand
,
J. M.
,
Gayvert
,
R. T.
, and
Clark
,
M. J.
(
2015
). “
Phonetics exercises using the Alvin experiment-control software
,”
J. Speech. Lang. Hear. Res.
58
,
171
184
.
34.
Houtsma
,
A. J. M.
, and
Smurzynski
,
J.
(
1990
). “
Pitch identification and discrimination for complex tones with many harmonics
,”
J. Acoust. Soc. Am.
87
,
304
310
.
35.
Hunter
,
L. L.
,
Monson
,
B. B.
,
Moore
,
D. R.
,
Dhar
,
S.
,
Wright
,
B. A.
,
Munro
,
K. J.
,
Zadeh
,
L. M.
,
Blankenship
,
C. M.
,
Stiepan
,
S. M.
, and
Siegel
,
J. H.
(
2020
). “
Extended high frequency hearing and speech perception implications in adults and children
,”
Hear. Res.
397
,
107922
.
36.
Hutka
,
S. A.
,
Alain
,
C.
,
Binns
,
M. A.
, and
Bidelman
,
G. M.
(
2013
). “
Age-related differences in the sequential organization of speech sounds
,”
J. Acoust. Soc. Am.
133
,
4177
4187
.
37.
Jenni
,
F.
, and
Flammer
,
J.
(
1987
). “
Experience with the reliability parameters of the octopus automated perimeter
,” in
Seventh International Visual Field Symposium, Amsterdam, September 1986. Documenta Ophthalmologica Proceedings Series
, edited by
E. L.
Greve
and
A.
Heijl
(
Springer
,
Dordrecht, the Netherlands
), pp.
601
603
.
38.
Joris
,
P. X.
,
Carney
,
L. H.
,
Smith
,
P. H.
, and
Yin
,
T. C.
(
1994
). “
Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency
,”
J. Neurophysiol.
71
,
1022
1036
.
39.
Kiang
,
N. Y. S.
, and
Moxon
,
E. C.
(
1974
). “
Tails of tuning curves of auditory‐nerve fibers
,”
J. Acoust. Soc. Am.
55
,
620
630
.
40.
Klatt
,
D. H.
(
1980
). “
Software for a cascade/parallel formant synthesizer
,”
J. Acoust. Soc. Am.
67
,
971
995
.
41.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2015
). “
Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss
,”
Hear. Res.
330
,
191
199
.
42.
Lad
,
M.
,
Holmes
,
E.
,
Chu
,
A.
, and
Griffiths
,
T.
(
2020
). “
Speech-in-noise detection is related to auditory working memory precision for frequency
,”
Sci. Rep.
10
,
13997
.
43.
LePrell
,
C. G.
,
Henderson
,
D.
, and
Fay
,
R. R.
(
2012
).
Noise-Induced Hearing Loss
(
Springer
,
Dordrecht, the Netherlands
), p.
376
.
44.
Liberman
,
M. C.
,
Epstein
,
M. J.
,
Cleveland
,
S. S.
,
Wang
,
H.
, and
Maison
,
S. F.
(
2016
). “
Toward a differential diagnosis of hidden hearing loss in humans
,”
PLoS ONE
11
,
e0162726
.
45.
Maccà
,
I.
,
Scapellato
,
M. L.
,
Carrieri
,
M.
,
Maso
,
S.
,
Trevisan
,
A.
, and
Bartolucci
,
G. B.
(
2015
). “
High-frequency hearing thresholds: Effects of age, occupational ultrasound and noise exposure
,”
Int. Arch. Occup. Environ. Health.
88
,
197
211
.
46.
Mackersie
,
C. L.
,
Prida
,
T. L.
, and
Stiles
,
D.
(
2001
). “
The role of sequential stream segregation and frequency selectivity in the perception of simultaneous sentences by listeners with sensorineural hearing loss
,”
J. Speech. Lang. Hear. Res.
44
,
19
28
.
47.
Maruthy
,
S.
,
Gnanateja
,
N.
,
Chengappa
,
P.
,
Publius
,
S.
, and
Athreya
,
V.
(
2018
). “
Effect of below-damage-risk criteria environmental noise on auditory perception and working memory
,”
Indian J. Otol.
24
,
98
104
.
48.
Mayadevi
,
C.
(
1974
). “
Development and standardization of a common speech discrimination test for Indians
,” M.Sc thesis,
University of Mysore
,
Mysore, India
.
49.
McKeown
,
J. D.
, and
Patterson
,
R. D.
(
1995
). “
The time course of auditory segregation: Concurrent vowels that vary in duration
,”
J. Acoust. Soc. Am.
98
,
1866
1877
.
50.
Mehrparvar
,
A.
,
Mirmohammadi
,
S.
,
Ghoreyshi
,
A.
,
Mollasadeghi
,
A.
, and
Loukzadeh
,
Z.
(
2011
). “
High-frequency audiometry: A means for early diagnosis of noise-induced hearing loss
,”
Noise Health
13
,
402
406
.
51.
Mepani
,
A. M.
,
Kirk
,
S. A.
,
Hancock
,
K. E.
,
Bennett
,
K.
,
de Gruttola
,
V.
,
Liberman
,
M. C.
, and
Maison
,
S. F.
(
2020
). “
Middle ear muscle reflex and word recognition in ‘normal-hearing’ adults: Evidence for cochlear synaptopathy?
,”
Ear. Hear.
41
,
25
38
.
52.
Mills
,
J. H.
,
Schmiedt
,
R. A.
,
Schulte
,
B. A.
, and
Dubno
,
J. R.
(
2006
). “
Age-related hearing loss: A loss of voltage, not hair cells
,”
Semin. Hear.
27
,
228
236
.
53.
Mioshi
,
E.
,
Dawson
,
K.
,
Mitchell
,
J.
,
Arnold
,
R.
, and
Hodges
,
J. R.
(
2006
). “
The Addenbrooke's cognitive examination revised (ACE-R): A brief cognitive test battery for dementia screening
,”
Int. J. Geriat. Psychiatry
21
,
1078
1085
.
54.
Mishra
,
S. K.
,
Saxena
,
U.
, and
Rodrigo
,
H.
(
2022
). “
Extended high-frequency hearing impairment despite a normal audiogram: Relation to early aging, speech-in-noise perception, cochlear function, and routine earphone use
,”
Ear Hear.
43
,
822
835
.
55.
Monson
,
B. B.
,
Hunter
,
E. J.
,
Lotto
,
A. J.
, and
Story
,
B. H.
(
2014
). “
The perceptual significance of high-frequency energy in the human voice
,”
Front. Psychol.
5
,
587
587
.
56.
Monson
,
B. B.
,
Rock
,
J.
,
Schulz
,
A.
,
Hoffman
,
E.
, and
Buss
,
E.
(
2019
). “
Ecological cocktail party listening reveals the utility of extended high-frequency hearing
,”
Hear. Res.
381
,
107773
.
57.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
,
Stoev
,
M.
,
Füllgrabe
,
C.
, and
Hopkins
,
K.
(
2012
). “
The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies (L)
,”
J. Acoust. Soc. Am.
131
,
1003
1006
.
58.
Moore
,
B.
, and
Gockel
,
H.
(
2002
). “
Factors influencing sequential stream segregation
,”
Acta. Acust. united. Ac.
88
,
320
333
.
59.
Moore
,
B. C. J.
, and
Gockel
,
H. E.
(
2012
). “
Properties of auditory stream formation
,”
Philos. Trans. R. Soc. B.
367
,
919
931
.
60.
Moore
,
B. C. J.
, and
Moore
,
G. A.
(
2003
). “
Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects
,”
Hear. Res.
182
,
153
163
.
61.
Moore
,
B. C. J.
,
Stone
,
M. A.
,
Füllgrabe
,
C.
,
Glasberg
,
B. R.
, and
Puria
,
S.
(
2008
). “
Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss
,”
Ear. Hear.
29
,
907
922
.
62.
Polspoel
,
S.
,
Kramer
,
S. E.
,
van Dijk
,
B.
, and
Smits
,
C.
(
2022
). “
The importance of extended high-frequency speech information in the recognition of digits, words, and sentences in quiet and noise
,”
Ear. Hear.
43
,
913
920
.
63.
Rodríguez Valiente
,
A.
,
Trinidad
,
A.
,
García Berrocal
,
J. R.
,
Górriz
,
C.
, and
Ramírez Camacho
,
R.
(
2014
). “
Extended high-frequency (9–20 kHz) audiometry reference thresholds in 645 healthy subjects
,”
Int. J. Audiol.
53
,
531
545
.
64.
Singh
,
P. G.
, and
Bregman
,
A. S.
(
1997
). “
The influence of different timbre attributes on the perceptual segregation of complex-tone sequences
,”
J. Acoust. Soc. Am.
102
,
1943
1952
.
65.
Škerková
,
M.
,
Kovalová
,
M.
, and
Mrázková
,
E.
(
2021
). “
High-frequency audiometry for early detection of hearing loss: A narrative review
,”
Int. J. Environ. Res. Public Health
18
,
20210428
.
66.
Smoorenburg
,
G. F.
(
1992
). “
Speech reception in quiet and in noisy conditions by individuals with noise-induced hearing loss in relation to their tone audiogram
,”
J. Acoust. Soc. Am.
91
,
421
437
.
67.
Snyder
,
J. S.
, and
Alain
,
C.
(
2006
). “
Sequential auditory scene analysis is preserved in normal aging adults
,”
Cereb. Cortex
17
,
501
512
.
68.
Somma
,
G.
,
Pietroiusti
,
A.
,
Magrini
,
A.
,
Coppeta
,
L.
,
Ancona
,
C.
,
Gardi
,
S.
,
Messina
,
M.
, and
Bergamaschi
,
A.
(
2008
). “
Extended high-frequency audiometry and noise induced hearing loss in cement workers
,”
Am. J. Ind. Med.
51
,
452
462
.
69.
Stelmachowicz
,
P. G.
,
Beauchaine
,
K. A.
,
Kalberer
,
A.
, and
Jesteadt
,
W.
(
1989
). “
Normative thresholds in the 8‐ to 20‐kHz range as a function of age
,”
J. Acoust. Soc. Am.
86
,
1384
1391
.
70.
Stelmachowicz
,
P. G.
,
Pittman
,
A. L.
,
Hoover
,
B. M.
, and
Lewis
,
D. E.
(
2001
). “
Effect of stimulus bandwidth on the perception of /s/ in normal- and hearing-impaired children and adults
,”
J. Acoust. Soc. Am.
110
,
2183
2190
.
71.
Sulaiman
,
A.
,
Husain
,
R.
, and
Seluakumaran
,
K.
(
2014
). “
Evaluation of early hearing damage in personal listening device users using extended high-frequency audiometry and otoacoustic emissions
,”
Eur. Arch. Otorhinolaryngol.
271
,
1463
1470
.
72.
Vaidyanath
,
R.
, and
Yathiraj
,
A.
(
2014
). “
Screening checklist for auditory processing in adults (SCAP-A): Development and preliminary findings
,”
J. Hear. Sci.
4
,
27
37
.
73.
van Noorden
,
L.
(
1975
). “
Temporal coherence in the perception of tone sequences
,” Ph.D. thesis,
Eindhoven University of Technology
,
Eindhoven, the Netherlands
.
74.
Vliegen
,
J.
,
Moore
,
B. C. J.
, and
Oxenham
,
A. J.
(
1999
). “
The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task
,”
J. Acoust. Soc. Am.
106
,
938
945
.
75.
Vliegen
,
J.
, and
Oxenham
,
A. J.
(
1999
). “
Sequential stream segregation in the absence of spectral cues
,”
J. Acoust. Soc. Am.
105
,
339
346
.
76.
Wang
,
M.
,
Ai
,
Y.
,
Han
,
Y.
,
Fan
,
Z.
,
Shi
,
P.
, and
Wang
,
H.
(
2021
). “
Extended high-frequency audiometry in healthy adults with different age groups
,”
J. Otolaryngol. Head. Neck. Surg.
50
,
52
.
77.
Wingfield
,
A.
,
Poon
,
L. W.
,
Lombardi
,
L.
, and
Lowe
,
D.
(
1985
). “
Speed of processing in normal aging: Effects of speech rate, linguistic structure, and processing time
,”
J. Gerontol.
40
,
579
585
.
78.
Yeend
,
I.
,
Beach
,
E. F.
, and
Sharma
,
M.
(
2019
). “
Working memory and extended high-frequency hearing in adults: Diagnostic predictors of speech-in-noise perception
,”
Ear Hear.
40
,
458
467
.
79.
Yeend
,
I.
,
Beach
,
E. F.
,
Sharma
,
M.
, and
Dillon
,
H.
(
2017
). “
The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise
,”
Hear. Res.
353
,
224
236
.
80.
Zadeh
,
L. M.
,
Silbert
,
N. H.
,
Sternasty
,
K.
,
Swanepoel
,
D. W.
,
Hunter
,
L. L.
, and
Moore
,
D. R.
(
2019
). “
Extended high-frequency hearing enhances speech perception in noise
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
23753
23759
.
81.
Zadeh
,
L. M.
,
Silbert
,
N. H.
,
Swanepoel
,
W.
, and
Moore
,
D. R.
(
2021
). “
Improved sensitivity of digits-in-noise test to high-frequency hearing loss
,”
Ear Hear.
42
,
565
573
.
You do not currently have access to this content.