Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 μm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an “acoustical camera” (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1–2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). “An ‘acoustical camera’ for in vitro characterization of contrast agent microbubble vibrations,” Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations (R0= 2.1 and 3.5 μm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this “extended AC” can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.

1.
Abramowitz
,
M.
, and
Stegun
,
I.
(
1974
).
Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables
(
U.S. GPO
,
Washington, DC
).
2.
Alsadiq
,
H.
,
Tupally
,
K.
,
Vogel
,
R.
,
Kokil
,
G.
,
Parekh
,
H. S.
, and
Veidt
,
M.
(
2021
). “
Shell properties and concentration stability of acoustofluidic delivery agents
,”
Phys. Eng. Sci. Med.
44
(
1
),
79
91
.
3.
Anderson
,
V. C.
(
1950
). “
Sound scattering from a fluid sphere
,”
J. Acoust. Soc. Am.
22
(
4
),
426
431
.
4.
Baddour
,
R. E.
(
2021
). “
MATLAB implementation of Anderson's solution of sound scattering from a fluid sphere (Anderson, V.V., JASA 22:426-431, 1950)
,” available at http://www.ieee-uffc.org/ultrasonics/software.asp (Last viewed April 30, 2021).
5.
Cavaro
,
M.
,
Payan
,
C.
,
Moysan
,
J.
, and
Baqué
,
F.
(
2011
). “
Microbubble cloud characterization by nonlinear frequency mixing
,”
J. Acoust. Soc. Am.
129
(
5
),
EL179
EL183
.
6.
Censor
,
D.
(
1984
). “
Harmonic and transient scattering from time varying obstacles
,”
J. Acoust. Soc. Am.
76
(
5
),
1527
1534
.
7.
Censor
,
D.
(
1986
). “
Reply to ‘Comments on “ ‘Harmonic and transient scattering from time varying obstacles” [J. Acoust. Soc. Am. 76, 1527–1534 (1984)],’
 ”
J. Acoust. Soc. Am.
79
(
1
),
181
182
.
8.
Censor
,
D.
(
1988
). “
Acoustical Doppler effect analysis—Is it a valid method?
,”
J. Acoust. Soc. Am.
83
(
4
),
1223
1230
.
9.
Chin
,
C. T.
,
Lancée
,
C.
,
Borsboom
,
J.
,
Mastik
,
F.
,
Frijlink
,
M. E.
,
De Jong
,
N.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2003
). “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
(
12
),
5026
5034
.
10.
Christensen-Jeffries
,
K.
,
Couture
,
O.
,
Dayton
,
P. A.
,
Eldar
,
Y. C.
,
Hynynen
,
K.
,
Kiessling
,
F.
,
O'Reilly
,
M.
,
Pinton
,
G. F.
,
Schmitz
,
G.
,
Tang
,
M.-X.
,
Tanter
,
M.
, and
van Sloun
,
R. J.
(
2020
). “
Super-resolution ultrasound imaging
,”
Ultrasound Med. Biol.
46
(
4
),
865
891
.
11.
Czarnecki
,
K.
,
Fouan
,
D.
,
Achaoui
,
Y.
, and
Mensah
,
S.
(
2015
). “
Fast bubble dynamics and sizing
,”
J. Sound Vib.
356
,
48
60
.
12.
de Jong
,
N.
,
Emmer
,
M.
,
Chin
,
C. T.
,
Bouakaz
,
A.
,
Mastik
,
F.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2007
). “ 
‘Compression-only’ behavior of phospholipid-coated contrast bubbles
,”
Ultrasound Med. Biol.
33
(
4
),
653
656
.
13.
Faez
,
T.
,
Emmer
,
M.
,
Docter
,
M.
,
Sijl
,
J.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2011
). “
Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging
,”
Ultrasound Med. Biol.
37
(
6
),
958
970
.
14.
Fouan
,
D.
,
Achaoui
,
Y.
,
Payan
,
C.
, and
Mensah
,
S.
(
2015
). “
Microbubble dynamics monitoring using a dual modulation method
,”
J. Acoust. Soc. Am.
137
(
2
),
EL144
EL150
.
15.
Frinking
,
P.
,
Segers
,
T.
,
Luan
,
Y.
, and
Tranquart
,
F.
(
2020
). “
Three decades of ultrasound contrast agents: A review of the past, present and future improvements
,”
Ultrasound Med. Biol.
46
(
4
),
892
908
.
16.
Hoff
,
L.
,
Sontum
,
P. C.
, and
Hovem
,
J. M.
(
2000
). “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
(
4
),
2272
2280
.
17.
Johnson
,
R. K.
(
1977
). “
Sound scattering from a fluid sphere revisited
,”
J. Acoust. Soc. Am.
61
(
2
),
375
377
.
18.
Lindner
,
J. R.
(
2004
). “
Microbubbles in medical imaging: Current applications and future directions
,”
Nat. Rev. Drug Discov.
3
(
6
),
527
533
.
19.
Luan
,
Y.
,
Renaud
,
G.
,
Raymond
,
J. L.
,
Segers
,
T.
,
Lajoinie
,
G.
,
Beurskens
,
R.
,
Mastik
,
F.
,
Kokhuis
,
T. J. A.
,
van der Steen
,
A. F. W.
,
Versluis
,
M.
, and
de Jong
,
N.
(
2016
). “
Combined optical sizing and acoustical characterization of single freely-floating microbubbles
,”
Appl. Phys. Lett.
109
(
23
),
234104
.
20.
Marmottant
,
P.
,
van der Meer
,
S.
,
Emmer
,
M.
,
Versluis
,
M.
,
de Jong
,
N.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
(
2005
). “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
(
6
),
3499
3505
.
21.
Piquette
,
J. C.
, and
Van Buren
,
A. L.
(
1986
). “
Some further remarks regarding scattering of an acoustic wave by a vibrating surface
,”
J. Acoust. Soc. Am.
80
(
5
),
1533
1536
.
22.
Piquette
,
J. C.
,
Van Buren
,
A. L.
, and
Rogers
,
P. H.
(
1988
). “
Censor's acoustical Doppler effect analysis—Is it a valid method?
,”
J. Acoust. Soc. Am.
83
(
4
),
1681
1682
.
23.
Putri
,
I. E.
, and
Redhyka
,
G. G.
(
2017
). “
Theoretical investigation on particle Brownian motion on micro-air-bubble characteristic in H2O solvent
,”
IOP Conf. Ser: Mater. Sci. Eng.
214
(
1
),
012003
.
24.
Renaud
,
G.
,
Bosch
,
J. G.
,
Van Der Steen
,
A. F.
, and
De Jong
,
N.
(
2014
). “
Low-amplitude non-linear volume vibrations of single microbubbles measured with an ‘acoustical camera,’
 ”
Ultrasound Med. Biol.
40
(
6
),
1282
1295
.
25.
Renaud
,
G.
,
Bosch
,
J. G.
,
van der Steen
,
A. F. W.
, and
de Jong
,
N.
(
2012a
). “
An ‘acoustical camera’ for in vitro characterization of contrast agent microbubble vibrations
,”
Appl. Phys. Lett.
100
(
10
),
101911
.
26.
Renaud
,
G.
,
Bosch
,
J. G.
,
van der Steen
,
A. F. W.
, and
de Jong
,
N.
(
2012b
). “
Chirp resonance spectroscopy of single lipid-coated microbubbles using an ‘acoustical camera,’
 ”
J. Acoust. Soc. Am.
132
(
6
),
EL470
EL475
.
27.
Sage
,
K. A.
,
George
,
J.
, and
Überall
,
H.
(
1979
). “
Multipole resonances in sound scattering from gas bubbles in a liquid
,”
J. Acoust. Soc. Am.
65
(
6
),
1413
1422
.
28.
Segers
,
T.
,
de Jong
,
N.
, and
Versluis
,
M.
(
2016
). “
Uniform scattering and attenuation of acoustically sorted ultrasound contrast agents: Modeling and experiments
,”
J. Acoust. Soc. Am.
140
(
4
),
2506
2517
.
29.
Segers
,
T.
,
Gaud
,
E.
,
Casqueiro
,
G.
,
Lassus
,
A.
,
Versluis
,
M.
, and
Frinking
,
P.
(
2020
). “
Foam-free monodisperse lipid-coated ultrasound contrast agent synthesis by flow-focusing through multi-gas-component microbubble stabilization
,”
Appl. Phys. Lett.
116
(
17
),
173701
.
30.
Segers
,
T.
,
Gaud
,
E.
,
Versluis
,
M.
, and
Frinking
,
P.
(
2018
). “
High-precision acoustic measurements of the nonlinear dilatational elasticity of phospholipid coated monodisperse microbubbles
,”
Soft Matter
14
(
47
),
9550
9561
.
31.
Segers
,
T.
,
Lassus
,
A.
,
Bussat
,
P.
,
Gaud
,
E.
, and
Frinking
,
P.
(
2019
). “
Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures
,”
Lab Chip
19
(
1
),
158
167
.
32.
Sennoga
,
C. A.
,
Yeh
,
J. S.
,
Alter
,
J.
,
Stride
,
E.
,
Nihoyannopoulos
,
P.
,
Seddon
,
J. M.
,
Haskard
,
D. O.
,
Hajnal
,
J. V.
,
Tang
,
M.-X.
, and
Eckersley
,
R. J.
(
2012
). “
Evaluation of methods for sizing and counting of ultrasound contrast agents
,”
Ultrasound Med. Biol.
38
(
5
),
834
845
.
33.
Sijl
,
J.
,
Overvelde
,
M.
,
Dollet
,
B.
,
Garbin
,
V.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
(
2011
). “ 
‘Compression-only’ behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
129
(
4
),
1729
1739
.
34.
Sirsi
,
S. R.
, and
Borden
,
M. A.
(
2009
). “
Microbubble compositions, properties and biomedical applications
,”
Bubble Sci., Eng. Technol.
1
(
1-2
),
3
17
.
35.
Spiekhout
,
S.
,
Voorneveld
,
J.
,
Renaud
,
G.
,
van Elburg
,
B.
,
Segers
,
T.
,
Versluis
,
M.
,
Verweij
,
M.
,
de Jong
,
N.
, and
Bosch
,
J.
(
2021
). “
Acoustical sizing of individual microbubbles using an ‘acoustical camera,’
 ” Erasmus MC, Rotterdam, pp.
117
120
, available at https://www.echocontrast.nl/archive/ (Last viewed May 6, 2021).
36.
Stride
,
E.
,
Segers
,
T.
,
Lajoinie
,
G.
,
Cherkaoui
,
S.
,
Bettinger
,
T.
,
Versluis
,
M.
, and
Borden
,
M.
(
2020
). “
Microbubble agents: New directions
,”
Ultrasound Med. Biol.
46
(
6
),
1326
1343
.
37.
van der Meer
,
S. M.
,
Dollet
,
B.
,
Voormolen
,
M. M.
,
Chin
,
C. T.
,
Bouakaz
,
A.
,
de Jong
,
N.
,
Versluis
,
M.
, and
Lohse
,
D.
(
2007
). “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
(
1
),
648
656
.
38.
van Elburg
,
B.
,
Collado-Lara
,
G.
,
Bruggert
,
G.-W.
,
Segers
,
T.
,
Versluis
,
M.
, and
Lajoinie
,
G.
(
2021
). “
Feedback-controlled microbubble generator producing one million monodisperse bubbles per second
,”
Rev. Sci. Instrum.
92
(
3
),
035110
.
39.
van Neer
,
P. L.
,
Vos
,
H. J.
, and
de Jong
,
N.
(
2011
). “
Reflector-based phase calibration of ultrasound transducers
,”
Ultrasonics
51
(
1
),
1
6
.
40.
Versluis
,
M.
,
Stride
,
E.
,
Lajoinie
,
G.
,
Dollet
,
B.
, and
Segers
,
T.
(
2020
). “
Ultrasound contrast agent modeling: A review
,”
Ultrasound Med. Biol.
46
(
9
),
2117
2144
.
41.
Wang
,
Q. X.
, and
Manmi
,
K.
(
2014
). “
Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound
,”
Phys. Fluids
26
(
3
),
032104
.
You do not currently have access to this content.