A piezoelectric acoustic absorber composed of double micro-perforated panels (MPPs) and their back cavity is studied in this paper. The outer layer of the MPP absorber is a common metal MPP, and the inner layer is a piezoelectric MPP made of polyvinylidene fluoride (PVDF) film. When an alternating voltage is applied to the polyvinylidene fluoride (PVDF)-micro-perforated panel (MPP), it can be excited to generate different structural vibration modes, which can bring an additional absorption peak to the absorption performance curve of the piezoelectric acoustic absorber. The numerical simulation and experimental results indicate that the frequency and sound absorption coefficient of the additional sound absorption peak are closely related to the voltage parameters. Especially when the frequency of the alternating voltage is close to the eigen-frequency of PVDF-MPP, the additional sound absorption peak is more significant. Therefore, the absorption coefficient of the piezoelectric acoustic absorber at the corresponding frequency can be effectively enhanced by appropriately adjusting the parameters of the excitation voltage. This method of selectively and specifically improving the sound absorption performance of the required frequency band is very effective in reducing the noise in the dynamic change.

1.
D. Y.
Maa
, “
Theory and design of microperforated panel sound-absorbing constructions
,”
Sci Sin.
18
,
55
71
(
1975
).
2.
X. F.
Shi
and
C. M.
Mak
, “
Sound attenuation of a periodic array of micro-perforated tube mufflers
,”
Appl. Acoust.
115
,
15
22
(
2017
).
3.
M. A.
Temiz
,
J.
Tournadre
,
I. L.
Arteaga
, and
A.
Hirschberg
, “
Modelling vibro-acoustic coupling in flexible micro-perforated plates by a patch-impedance approach
,”
Appl. Acoust.
125
,
80
90
(
2017
).
4.
K.
Sakagami
,
Y.
Nagayama
,
M.
Morimoto
, and
M.
Yairi
, “
Pilot study on wideband sound absorber obtained by combination of two different microperforated panel (MPP) absorbers
,”
Acoust. Sci. Tech.
30
,
154
156
(
2009
).
5.
K.
Sakagami
,
K.
Matsutani
, and
M.
Morimoto
, “
Sound absorption of a double-leaf micro-perforated panel with an air-back cavity and a rigid-back wall: Detailed analysis with aHelmholtz–Kirchhoff integral formulation
,”
Appl. Acoust.
71
,
411
417
(
2010
).
6.
H.
Ruiz
,
P.
Cobo
, and
F.
Jacobsen
, “
Optimization of multiple-layer microperforated panels by simulated annealing
,”
Appl. Acoust.
72
,
772
776
(
2011
).
7.
X. L.
Gai
,
T.
Xing
,
X. H.
Li
, and
B.
Zhang
, “
Sound absorption of microperforated panel with L shape division cavity structure
,”
Appl. Acoust.
122
,
41
50
(
2017
).
8.
S. B.
Huang
,
S. M.
Li
,
X.
Wang
, and
D. X.
Mao
, “
Micro-perforated absorbers with incompletely partitioned cavities
,”
Appl. Acoust.
126
,
114
119
(
2017
).
9.
S. B.
Huang
,
Z. L.
Zhou
,
D. T.
Li
,
T.
Liu
,
X.
Wang
,
J.
Zhu
, and
D. X.
Li
, “
Micro-perforated absorbers with incompletely partitioned cavities
,”
Sci. Bull.
65
,
373
379
(
2020
).
10.
Z. L.
Zhou
,
S. B.
Huang
,
D. T.
Li
,
J.
Zhu
, and
Y.
Li
, “
Broadband impedance modulation via non-local acoustic metamaterials
,”
Natl. Sci. Rev.
(published online
2021
).
11.
J.
Carbajo
,
J.
Ramis
,
L.
Godinho
, and
P.
Amado-Mendes
, “
Perforated panel absorbers with micro-perforated partitions
,”
Appl. Acoust.
149
,
108
113
(
2019
).
12.
X. D.
Zhao
,
Y. J.
Yu
, and
Y. J.
Wu
, “
Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators
,”
Appl. Acoust.
114
,
92
98
(
2016
).
13.
X. D.
Zhao
,
X.
Wang
, and
Y. J.
Yu
, “
Enhancing low-frequency sound absorption of micro-perforated panel absorbers by combining parallel mechanical impedance
,”
Appl. Acoust.
130
,
300
304
(
2018
).
14.
Y. Y.
Lee
,
E. W. M.
Lee
, and
C. F.
NG
, “
Sound absorption of a finite flexible micro-perforated panel backed by an air cavity
,”
J. Sound Vib.
287
,
227
243
(
2005
).
15.
Y. Y.
Lee
and
E. W. M.
Lee
, “
Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances
,”
Int. J. Mech. Sci.
49
,
925
934
(
2007
).
16.
K.
Sakagami
,
M.
Morimoto
, and
M.
Yairi
, “
A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers
,”
Appl. Acoust.
70
,
1131
1136
(
2009
).
17.
K.
Sakagami
,
Y.
Fukutani
,
M.
Yairi
, and
M.
Morimoto
, “
Sound absorption characteristics of a double-leaf structure with an MPP and a permeable membrane
,”
Appl. Acoust.
76
,
28
34
(
2014
).
18.
M.
Toyoda
,
R. L.
Mu
, and
D.
Takahashi
, “
Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers
,”
Appl. Acoust.
71
,
315
320
(
2010
).
19.
P.
Cobo
,
J.
Pfretzschner
,
M.
Cuesta
, and
D. K.
Anthony
, “
Hybrid passive-active absorption using microperforated panels
,”
J. Acoust. Soc. Am.
116
,
2118
2125
(
2004
).
20.
J. W.
Fox
and
N. C.
Goulbourne
, “
On the dynamic electromechanical loading of dielectric elastomer membranes
,”
J. Mech. Phys. Solids
56
,
2669
2686
(
2008
).
21.
J. W.
Fox
and
N. C.
Goulbourne
, “
Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes
,”
J. Mech. Phys. Solids
57
,
1417
1435
(
2009
).
22.
Z. B.
Lu
,
Y. D.
Cui
,
M.
Debiasi
, and
Z. J.
Zhao
, “
A tunable dielectric elastomer acoustic absorber
,”
Acta Acust. Acust.
101
,
863
866
(
2015
).
23.
Z. B.
Lu
,
M.
Shrestha
, and
G. K.
Lau
, “
Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer actuator
,”
Appl. Phys. Lett.
110
,
182901
(
2017
).
24.
X.
Yu
,
Z. B.
Lu
,
C.
Li
, and
F. S.
Cui
, “
Vibroacoustic modeling of an acoustic resonator tuned by dielectric elastomer membrane with voltage control
,”
J. Sound Vib.
387
,
114
126
(
2017
).
25.
Y.
Liu
,
K. A.
Chen
,
Y. N.
Zhang
, and
X. Y.
Ma
, “
Low-frequency and large-scale hybrid sound absorption using active force control
,”
Acoust. Aust.
49
,
93
103
(
2021
).
26.
N.
Gao
,
Z.
Dong
,
H. Y.
Mak
, and
P.
Sheng
, “
Manipulation of low-frequency sound with a tunable active metamaterial panel
,”
Phys. Rev. Appl.
17
,
044037
(
2022
).
27.
N.
Gao
,
S. C.
Qu
,
J.
Li
,
J.
Wang
, and
W. Q.
Chen
, “
Harnessing post-buckling deformation to tune sound absorption in soft Helmholtz absorbers
,”
Int. J. Mech. Sci.
208
,
106695
(
2021
).
28.
M. A.
Temiz
and
I. L.
Arteaga
, “
The influence of edge geometry on end-correction coefficients in micro perforated plates
,”
J. Acoust. Soc. Am.
138
,
3668
3677
(
2015
).
29.
J.
Carbajo
,
J.
Ramis
,
L.
Godinho
,
P.
Amado-Mendes
, and
J.
Alba
, “
A finite element model of perforated panel absorbers including viscothermal effects
,”
Appl. Acoust.
90
,
1
8
(
2015
).
30.
P.
Kelly
,
Solid Mechanics Part II: Engineering Solid Mechanics
((The University of Auckland,
Auckland
,
2013
), Chap. 6, pp.
174
179
, available at http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/index.html.
You do not currently have access to this content.