The internal and external spectra of woodwind reed instruments are partially determined by the tonehole lattice cutoff and reed resonance frequencies. Because they can impact the spectrum in similar ways, a study of one without accounting for the other risks incomplete or false conclusions. Here, the dual effects of the cutoff and reed resonance frequencies are investigated using digital synthesis with clarinet-like academic resonators. It is shown that the odd and even harmonics have similar amplitudes at and above the cutoff frequency or reed resonance frequency, whichever is lowest. However, because the resonators radiate efficiently at the cutoff, it has the additional role of reinforcing the amplitude of both the odd and even harmonics in the external spectrum. The spectra are analyzed using the single value descriptors playing frequency, spectral centroid (SC), odd/even ratio (OER), and brightness as a function of the musician mouth pressure. Higher reed resonances correspond to higher values for all descriptors. The OER and brightness increase with resonator cutoff frequency, whereas the SC exhibits more complicated trends. The reed resonance has a larger impact on the “playing condition oscillation threshold,” implying that it may have a more important role in sustaining auto-oscillation.

1.
A. H.
Benade
and
S. N.
Kouzoupis
, “
The clarinet spectrum: Theory and experiment
,”
J. Acoust. Soc. Am.
83
(
1
),
292
304
(
1988
).
2.
L.
Brillouin
and
M.
Parodi
,
Wave Propagation in Periodic Structures
(
Dover Publications
,
New York
,
1946
).
3.
A. H.
Benade
, “
On the mathematical theory of woodwind finger holes
,”
J. Acoust. Soc. Am.
32
,
1591
1608
(
1960
).
4.
D. H.
Keefe
, “
Woodwind air column models
,”
J. Acoust. Soc. Am.
88
,
35
51
(
1990
).
5.
E.
Moers
and
J.
Kergomard
, “
On the cutoff frequency of clarinet-like instruments. Geometrical versus acoustical regularity
,”
Acta Acust. united Acust.
97
,
984
996
(
2011
).
6.
E.
Petersen
,
T.
Colinot
,
J.
Kergomard
, and
P.
Guillemain
, “
On the tonehole lattice cutoff frequency of conical resonators: Applications to the saxophone
,”
Acta Acust.
4
(
4
),
13
(
2020
).
7.
P.-A.
Taillard
,
F.
Laloë
,
M.
Gross
,
J.-P.
Dalmont
, and
J.
Kergomard
, “
Statistical estimation of mechanical parameters of clarinet reeds using experimental and numerical approaches
,”
Acta Acust. united Acust.
100
(
3
),
555
573
(
2014
).
8.
A.
Muñoz Arancón
, “
New techniques for the characterization of single reeds in playing conditions
,” Ph.D. thesis,
Université du Maine
,
Le Mans, France
,
2017
.
9.
P.-A.
Taillard
, “
Theoretical and experimental study of the role of the reed in clarinet playing
,” Ph.D. thesis,
Le Mans Université
,
Le Mans, France
,
2018
.
10.
S. C.
Thompson
, “
The effect of the reed resonance on woodwind tone production
,”
J. Acoust. Soc. Am.
66
(
5
),
1299
1307
(
1979
).
11.
A.
Almeida
,
D.
George
,
J.
Smith
, and
J.
Wolfe
, “
The clarinet: How blowing pressure, lip force, lip position and reed ‘hardness’ affect pitch, sound level, and spectrum
,”
J. Acoust. Soc. Am.
134
(
3
),
2247
2255
(
2013
).
12.
S.
Karkar
,
C.
Vergez
, and
B.
Cochelin
, “
Oscillation threshold of a clarinet model: A numerical continuation approach
,”
J. Acoust. Soc. Am.
131
(
1
),
698
707
(
2012
).
13.
E. A.
Petersen
,
T.
Colinot
,
P.
Guillemain
, and
J.
Kergomard
, “
The link between the tonehole lattice cutoff frequency and clarinet sound radiation: A quantitative study
,”
Acta Acust.
4
(
5
),
18
(
2020
).
14.
A. H.
Benade
and
S. J.
Lutgen
, “
The saxophone spectrum
,”
J. Acoust. Soc. Am.
83
,
1900
1907
(
1988
).
15.
M.
Barthet
,
P.
Guillemain
,
R.
Kronland-Martinet
, and
S.
Ystad
, “
From clarinet control to timbre perception
,”
Acta Acust. united Acust.
96
,
678
689
(
2010
).
16.
E.
Petersen
,
P.
Guillemain
,
J.
Kergomard
, and
T.
Colinot
, “
The effect of the cutoff frequency on the sound production of a clarinet-like instrument
,”
J. Acoust. Soc. Am.
145
(
6
),
3784
3794
(
2019
).
17.
J.-P.
Dalmont
,
J.
Gilbert
, and
S.
Ollivier
, “
Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements
,”
J. Acoust. Soc. Am.
114
(
4
),
2253
2262
(
2003
).
18.
A. H.
Benade
, “
From instrument to ear in a room: Direct or via recording
,”
J. Audio Eng. Soc.
33
(
4
),
218
233
(
1985
).
19.
N.
Giordano
and
V.
Chatziioannou
, “
Status and future of modeling of musical instruments: Introduction to the JASA special issue
,”
J. Acoust. Soc. Am.
150
(
3
),
2294
2301
(
2021
).
20.
E. A.
Petersen
,
T.
Colinot
,
F.
Silva
, and
V.
H.-Turcotte
, “
The bassoon tonehole lattice: Links between the open and closed holes and the radiated sound spectrum
,”
J. Acoust. Soc. Am.
150
(
1
),
398
409
(
2021
).
21.
Website on musical acoustics maintained by Joe Wolfe
,” http://www.phys.unsw.edu.au/jw/ (Last viewed 10/15/
2021
).
22.
A.
Lefebvre
,
G.
Scavone
, and
J.
Kergomard
, “
External tonehole interactions in woodwind instruments
,”
Acta Acust. united Acust.
99
,
975
985
(
2013
).
23.
E. A.
Petersen
, “
Wave propagation in periodic structures applied to woodwind tonehole lattices: How the cutoff frequency balances sound production and radiation
,” Ph.D. thesis,
Aix-Marseille Université
,
Marseille, France
,
2020
.
24.
W. L.
Coyle
,
P.
Guillemain
,
J.
Kergomard
, and
J.-P.
Dalmont
, “
Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas
,”
J. Acoust. Soc. Am.
138
(
5
),
2770
2781
(
2015
).
25.
T.
Colinot
, “
Numerical simulation of woodwind dynamics: Investigating nonlinear sound production behavior in saxophone-like instruments
,” Ph.D. thesis,
Aix-Marseille Université
,
Marseille, France
,
2020
.
26.
T. A.
Wilson
and
G. S.
Beavers
, “
Operating modes of the clarinet
,”
J. Acoust. Soc. Am.
56
(
2
),
653
658
(
1974
).
27.
F.
Avanzini
and
M.
Van Walstijn
, “
Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part I: A one-dimensional distributed model
,”
Acta Acust. united Acust.
90
,
537
547
(
2004
).
28.
S.
Bilbao
,
A.
Torin
, and
V.
Chatziioannou
, “
Numerical modeling of collisions in musical instruments
,”
Acta Acust. united Acust.
101
(
1
),
155
173
(
2015
).
29.
T.
Colinot
,
C.
Vergez
,
P.
Guillemain
, and
J.-B.
Doc
, “
Multistability of saxophone oscillation regimes and its influence on sound production
,”
Acta Acust.
5
,
33
(
2021
).
30.
T.
Colinot
,
L.
Guillot
,
C.
Vergez
,
P.
Guillemain
,
J.-B.
Doc
, and
B.
Cochelin
, “
Influence of the ‘ghost reed’ simplification on the bifurcation diagram of a saxophone model
,”
Acta Acust. united Acust.
105
,
1291
1294
(
2019
).
31.
S.
Ollivier
, “
Contribution à l'étude des oscillations des instruments à vent à anche simple” (“A contribution to the study of single reed woodwind instruments”)
, Ph.D. thesis,
Université du Maine
,
Le Mans, France
,
2002
.
32.
B.
Gazengel
,
J.
Gilbert
, and
N.
Amir
, “
Time domain simulation of single reed wind instrument. from the measured input impedance to the synthesis signal: Where are the traps?
,”
Acta Acust. united Acust.
3
,
445
472
(
1995
).
33.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0011467 for audio examples.
34.
O.
Lartillot
and
P.
Toiviainen
, “
A matlab toolbox for musical feature extraction from audio
,” in
Proceedings of the International Conference on Digital Audio Effects
, Bordeaux, France (September 11–14,
2007
).
35.
E.
Schubert
and
J.
Wolfe
, “
Does timbral brightness scale with frequency and spectral centroid
,”
Acta Acust. united Acust.
92
,
820
825
(
2006
).
36.
P.
Laukka
,
P.
Juslin
, and
R.
Bresin
, “
A dimensional approach to vocal expression of emotion
,”
Cogn. Emot.
19
(
5
),
633
653
(
2005
).
37.
P. N.
Juslin
, “
Cue utilization in communication of emotion in music performance: Relating performance to perception
,”
J. Exp. Psychol. Hum. Percept. Perform.
26
(
6
),
1797
1812
(
2000
).
38.
S.
Ollivier
,
J.
Kergomard
, and
J.-P.
Dalmont
, “
Spectrum of cylindrica reed instruments: Comparison between theory and experiment
,” in
Proceedings of the International Symposium on Music Acoustics (ISMA)
, Perugia, Italy (September 10–14,
2001
).
39.
A.
Chaigne
and
J.
Kergomard
,
Acoustics of Musical Instruments
(
Springer
,
New York
,
2016
).
40.
F.
Silva
,
J.
Kergomard
,
C.
Vergez
, and
J.
Gilbert
, “
Interaction of reed and acoustic resonator in clarinetlike systems
,”
J. Acoust. Soc. Am.
124
(
5
),
3284
3295
(
2008
).
41.
F.
Silva
, “
Émergence des auto-oscillations dans un instrument de musique à anche simple” (“Emergence of self-oscillations in a single-reed musical instrument”)
, Ph.D. thesis,
Université de Provence—Aix-Marseille I
,
Marseille, France
,
2009
.
42.
P.
Guillemain
,
C.
Vergez
,
D.
Ferrand
, and
A.
Farcy
, “
An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays
,”
Acta Acust. united Acust.
96
,
622
634
(
2010
).

Supplementary Material

You do not currently have access to this content.