Auditory evoked potentials can be estimated by synchronous averaging when the responses to the individual stimuli are not overlapped. However, when the response duration exceeds the inter-stimulus interval, a deconvolution procedure is necessary to obtain the transient response. The iterative randomized stimulation and averaging and the equivalent randomized stimulation with least squares deconvolution have been proven to be flexible and efficient methods for deconvolving the evoked potentials, with minimum restrictions in the design of stimulation sequences. Recently, a latency-dependent filtering and down-sampling (LDFDS) methodology was proposed for optimal filtering and dimensionality reduction, which is particularly useful when the evoked potentials involve the complete auditory pathway response (i.e., from the cochlea to the auditory cortex). In this case, the number of samples required to accurately represent the evoked potentials can be reduced from several thousand (with conventional sampling) to around 120. In this article, we propose to perform the deconvolution in the reduced representation space defined by LDFDS and present the mathematical foundation of the subspace-constrained deconvolution. Under the assumption that the evoked response is appropriately represented in the reduced representation space, the proposed deconvolution provides an optimal least squares estimation of the evoked response. Additionally, the dimensionality reduction provides a substantial reduction of the computational cost associated with the deconvolution. matlab/Octave code implementing the proposed procedures is included as supplementary material.

1.
Asilador
,
A.
, and
Llano
,
D. A.
(
2021
). “
Top-down inference in the auditory system: Potential roles for corticofugal projections
,”
Front. Neural Circuits
14
,
615259
.
2.
Bardy
,
F.
,
Dillon
,
H.
, and
Dun
,
B. V.
(
2014a
). “
Least-squares deconvolution of evoked potentials and sequence optimization for multiple stimuli under low-jitter conditions
,”
Clin. Neurophysiol.
125
,
727
737
.
3.
Bardy
,
F.
,
Dun
,
B. V.
,
Dillon
,
H.
, and
Cowan
,
R.
(
2014b
). “
Least-squares (LS) deconvolution of a series of overlapping cortical auditory evoked potentials: A simulation and experimental study
,”
J. Neural Eng.
11
,
046016
.
4.
Bardy
,
F.
,
Dun
,
B. V.
,
Dillon
,
H.
, and
McMahon
,
C. M.
(
2014c
). “
Deconvolution of overlapping cortical auditory evoked potentials recorded using short stimulus onset-asynchrony ranges
,”
Clin. Neurophysiol.
125
,
814
826
.
5.
Bohórquez
,
J.
, and
Özdamar
,
Ö.
(
2006
). “
Signal to noise ratio analysis of maximum length sequence deconvolution of overlapping evoked potentials
,”
J. Acoust. Soc. Am.
119
,
2881
2888
.
6.
Burkard
,
R. F.
, and
Don
,
M.
(
2007
). “
The auditory brainstem response
,” in
Auditory Evoked Potentials: Basic Principles and Clinical Application
, edited by
R.
Burkard
,
M.
Don
, and
J.
Eggermont
(
Lippincott Williams & Wilkins
,
Baltimore, MD
), pp.
229
253
.
7.
Burkard
,
R. F.
,
Finneran
,
J. J.
, and
Mulsow
,
J.
(
2018
). “
Comparison of maximum length sequence and randomized stimulation and averaging methods on the bottlenose dolphin auditory brainstem response
,”
J. Acoust. Soc. Am.
144
,
308
318
.
8.
de la Torre
,
A.
,
Valderrama
,
J. T.
,
Segura
,
J. C.
, and
Alvarez
,
I. M.
(
2019
). “
Matrix-based formulation of the iterative randomized stimulation and averaging method for recording evoked potentials
,”
J. Acoust. Soc. Am.
146
,
4545
4556
.
9.
de la Torre
,
A.
,
Valderrama
,
J. T.
,
Segura
,
J. C.
, and
Alvarez
,
I. M.
(
2020
). “
Latency-dependent filtering and compact representation of the complete auditory pathway response
,”
J. Acoust. Soc. Am.
148
,
599
613
.
10.
Elberling
,
C.
, and
Don
,
M.
(
2007
). “
Detecting and assessing synchronous neural activity in the temporal domain (snr, response detection)
,” in
Auditory Evoked Potentials: Basic Principles and Clinical Application
, edited by
R.
Burkard
,
M.
Don
, and
J.
Eggermont
(
Lippincott Williams & Wilkins
,
Baltimore, MD
), pp.
102
123
.
11.
Eysholdt
,
U.
, and
Schreiner
,
C.
(
1982
). “
Maximum length sequences: A fast method for measuring brain-stem-evoked responses
,”
Int. J. Audiol.
21
,
242
250
.
12.
Finneran
,
J. J.
,
Mulsow
,
J.
, and
Burkard
,
R. F.
(
2019
). “
Signal-to-noise ratio of auditory brainstem responses (ABRs) across click rate in the bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
145
,
1143
1151
.
13.
Gentle
,
J. E.
(
1998
).
Numerical Linear Algebra for Applications in Statistics
(
Springer
,
New York
).
14.
Gillespie
,
P. G.
, and
Müller
,
U.
(
2009
). “
Mechanotransduction by hair cells: Models, molecules, and mechanisms
,”
Cell
139
,
33
44
.
15.
Goldberger
,
A.
,
Shenhart
,
W.
, and
Wilks
,
S.
(
1964
). “
Classical linear regression
,” in
Econometric Theory
(
Wiley
,
New York
).
16.
Hall
,
J. W.
(
2007
).
New Handbook of Auditory Evoked Potentials
(
Pearson Education
,
Boston
), pp.
58
108
.
17.
Hayashi
,
F.
(
2000
).
Econometrics
(
Princeton University
,
Princeton, NJ
).
18.
Holt
,
F.
, and
Ozdamar
,
O.
(
2016
). “
Effects of rate (0.3–40/s) on simultaneously recorded auditory brainstem, middle and late responses using deconvolution
,”
Clin. Neurophysiol.
127
,
1589
1602
.
19.
Hood
,
L. J.
(
2007
). “
Auditory neuropathy and dys-synchrony
,” in
Auditory Evoked Potentials: Basic Principles and Clinical Application
, edited by
R.
Burkard
,
M.
Don
, and
J.
Eggermont
(
Lippincott Williams & Wilkins
,
Baltimore, MD
), pp.
275
290
.
20.
Jewett
,
D. L.
,
Caplovitz
,
G.
,
Baird
,
B.
,
Trumpis
,
M.
,
Olson
,
M. P.
, and
Larson-Prior
,
L. J.
(
2004
). “
The use of qsd (q-sequence deconvolution) to recover superposed, transient evoked-responses
,”
Clin. Neurophysiol.
115
,
2754
2775
.
21.
Kohl
,
M. C.
,
Schebsdat
,
E.
,
Schneider
,
E. N.
,
Niehl
,
A.
,
Strauss
,
D. J.
,
Özdamar
,
Ö.
, and
Bohórquez
,
J.
(
2019
). “
Fast acquisition of full-range auditory event-related potentials using an interleaved deconvolution approach
,”
J. Acoust. Soc. Am.
145
,
540
550
.
22.
Lawson
,
C. L.
, and
Hanson
,
R. J.
(
1974
).
Solving Least Squares Problems
(
Prentice-Hall
,
Englewood Cliffs, NJ
).
23.
Lesicko
,
A. M. H.
, and
Llano
,
D. A.
(
2017
). “
Impact of peripheral hearing loss on top-down auditory processing
,”
Hear. Res.
343
,
4
13
.
24.
Lütkenhöner
,
B.
(
2010
). “
Baseline correction of overlapping event-related responses using a linear deconvolution technique
,”
NeuroImage
52
,
86
96
.
25.
Maddox
,
R. K.
, and
Lee
,
A. K. C.
(
2018
). “
Auditory brainstem responses to continuous natural speech in human listeners
,”
eNeuro
5
,
e0441
.
26.
Martinez
,
M.
,
Valderrama
,
J. T.
,
Alvarez
,
I.
,
Vargas
,
J. L.
, and
de la Torre
,
A.
(
2021
). “
The transient response to interaural time differences
,” in
Proceedings of the XXVII International Evoked Response Audiometry Study Group (IERASG-2021)
, June 14–July 9, p.
50
.
27.
Martinez
,
M.
,
Valderrama
,
J. T.
,
Alvarez
,
I.
,
Vargas
,
J. L.
, and
de la Torre
,
A.
(
2022
). “
Auditory brainstem responses obtained with randomised stimulation level
,”
Int. J. Audiol.
(published online).
28.
Özdamar
,
Ö.
, and
Bohórquez
,
J.
(
2006
). “
Signal-to-noise ratio and frequency analysis of continuous loop averaging deconvolution (clad) of overlapping evoked potentials
,”
J. Acoust. Soc. Am.
119
,
429
438
.
29.
Press
,
W. H.
,
Teutolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
(
2002
).
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University
,
New York
).
30.
Sharma
,
M.
(
2021
). “
Episode 3: Late-late shows in AEPdom—Beyond obligatory potentials: When just turning on the same stimulus is not enough
,” in
Basic Concepts of Clinical Electrophysiology in Audiology
, edited by
J.
Durrant
,
C.
Fowler
,
J.
Ferraro
, and
S.
Purdy
(
Plural Publishing
,
San Diego, CA
), pp.
336
348
.
31.
Thornton
,
A. R. D.
(
2007
). “
Instrumentation and recording parameters
,” in
Auditory Evoked Potentials: Basic Principles and Clinical Application
, edited by
R.
Burkard
,
M.
Don
, and
J.
Eggermont
(
Lippincott Williams & Wilkins
,
Baltimore, MD
), pp.
73
101
.
32.
Thornton
,
A. R. D.
, and
Coleman
,
A.
(
1975
). “
The adaptation of cochlear and brainstem auditory evoked potentials in humans
,”
Electroencephalogr. Clin. Neurophysiol.
39
,
399
406
.
33.
Thornton
,
A. R. D.
, and
Slaven
,
A.
(
1993
). “
Auditory brainstem responses recorded at fast stimulation rates using maximum length sequences
,”
Br. J. Audiol.
27
,
205
210
.
34.
Valderrama
,
J. T.
,
Alvarez
,
I.
,
de la Torre
,
A.
,
Segura
,
J. C.
,
Sainz
,
M.
, and
Vargas
,
J. L.
(
2012
). “
Recording of auditory brainstem response at high stimulation rates using randomized stimulation and averaging
,”
J. Acoust. Soc. Am.
132
,
3856
3865
.
35.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Alvarez
,
I.
,
Segura
,
J. C.
,
Sainz
,
M.
, and
Vargas
,
J. L.
(
2013
). “
A portable, modular, and low cost auditory brainstem response recording system including an algorithm for automatic identification of responses suitable for hearing screening
,” in
Proceedings of the IEEE/EMBS Special Topic Conference on Point-of-Care HealthCare Technologies (PoCHT)
, January 16–18, Bangalore, India, pp.
180
189
.
36.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Alvarez
,
I.
,
Segura
,
J. C.
,
Sainz
,
M.
, and
Vargas
,
J. L.
(
2014a
). “
A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes
,”
Biomed. Tech.
59
,
447
459
.
37.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Alvarez
,
I.
,
Segura
,
J. C.
,
Thornton
,
A. R. D.
,
Sainz
,
M.
, and
Vargas
,
J. L.
(
2014b
). “
Auditory brainstem and middle latency responses recorded at fast rates with randomized stimulation
,”
J. Acoust. Soc. Am.
136
,
3233
3248
.
38.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Alvarez
,
I.
,
Segura
,
J. C.
,
Thornton
,
A. R. D.
,
Sainz
,
M.
, and
Vargas
,
J. L.
(
2014c
). “
A study of adaptation mechanisms based on abr recorded at high stimulation rate
,”
Clin. Neurophysiol.
125
,
805
813
.
39.
Valderrama
,
J. T.
,
de la Torre
,
A.
, and
Dun
,
B. V.
(
2018
). “
An automatic algorithm for blink-artifact suppression based on iterative template matching: Application to single channel recording of cortical auditory evoked potentials
,”
J. Neural Eng.
15
,
016008
.
40.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Dun
,
B. V.
, and
Segura
,
J. C.
(
2019
). “
Towards the recording of brainstem and cortical evoked potentials from the fine structure of natural speech
,” in
Proceedings of the XXVI International Evoked Response Audiometry Study Group (IERASG) Biennial Symposium
, June 30–July 4, Sydney, Australia.
41.
Valderrama
,
J. T.
,
de la Torre
,
A.
,
Medina
,
C.
,
Segura
,
J. C.
, and
Thornton
,
A. R. D.
(
2016
). “
Selective processing of auditory evoked responses with iterative-randomized stimulation and averaging: A strategy for evaluating the time-invariant assumption
,”
Hear. Res.
333
,
66
76
.
42.
Woldorff
,
M. G.
(
1993
). “
Distortion of ERP averages due to overlap from temporally adjacent ERPs: Analysis and correction
,”
Psychophysiology
30
,
98
119
.
43.
Zakaria
,
M. N.
,
Abdullah
,
R.
,
Nik
,
O.
, and
Nik
,
A.
(
2019
). “
The influence of stimulus repetition rate on tone-evoked post-auricular muscle response (PAMR) threshold
,”
Ear Hear.
40
(
4
),
1039
1042
.
You do not currently have access to this content.