The effects of a kinematic field of velocity fluctuations on the loudness metrics of two waveforms are examined with a three-dimensional one-way propagation solver. The waveforms consist of an N-wave and a simulated low-boom from NASA's X-59 QueSST aircraft. The kinematic turbulence is generated using a von Kármán composite spectrum, which is dependent on a root mean square (rms) velocity and outer scale of the turbulence. A length scale is proposed to account for the effect of the rms velocity and integral scale on the focusing and defocusing of the sonic boom waveform. The probability density function of the location of the first caustic attains a maximum value when the propagation distance is equal to the proposed length scale. Simulation results indicate that for small values of the nondimensional propagation distance, the standard deviation of the loudness metrics increases linearly. The loudness metrics follow a normal distribution within a given range of the nondimensional propagation distance. Results indicate the potential to parameterize the loudness metric distributions by the rms velocity and integral length scale.

1.
D. J.
Maglieri
,
P. J.
Bobbitt
,
K. J.
Plotkin
,
K. P.
Shepherd
,
P. G.
Coen
, and
D. M.
Richwine
, “
Sonic boom: Six decades of research
,” NASA/SP-2014-622,
NASA Langley Research Center
,
Hampton, VA
(
2014
).
2.
D.
Hilton
,
V.
Huckel
, and
D.
Maglieri
, “
Sonic boom measurements during bomber training operation in the Chicago area
,” NASA/TN-D2655,
NASA Langley Research Center
,
Hampton, VA
(
1966
).
3.
A. D.
Pierce
and
D. J.
Maglieri
, “
Effects of atmospheric irregularities on sonic-boom propagation
,”
J. Acoust. Soc. Am.
51
(
2C
),
702
721
(
1972
).
4.
M. P.
Friedman
,
E. J.
Kane
, and
A.
Sigalla
, “
Effects of atmosphere and aircraft motion on the location and intensity of a sonic boom
,”
AIAA J.
1
(
6
),
1327
1335
(
1963
).
5.
W. D.
Hayes
and
H. L.
Runyan
, “
Sonic-boom propagation through a stratified atmosphere
,”
J. Acoust. Soc. Am.
51
(
2C
),
695
701
(
1972
).
6.
C. L.
Thomas
, “
Extrapolation of sonic boom pressure signatures by the waveform parameter method
,” NASA-TN-D-6832,
Ames Research Center
,
Mountain View, CA
(
1972
).
7.
K. J.
Plotkin
,
M.
Downing
, and
J.
Page
, “
USAF single event sonic boom prediction model: PCBOOM
,”
J. Acoust. Soc. Am.
95
(
5
),
2839
(
1994
).
8.
P. V.
Yuldashev
,
S.
Ollivier
,
M. M.
Karzova
,
V. A.
Khokhlova
, and
P.
Blanc-Benon
, “
Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence
,”
J. Acoust. Soc. Am.
142
(
6
),
3402
3415
(
2017
).
9.
T.
Stout
, “
Simulation of N-wave and shaped supersonic signature turbulent variations
,” Ph.D. thesis,
Pennsylvania State University
,
State College, PA
,
2018
.
10.
D.
Luquet
, “
3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom
,” Ph.D. thesis,
Université Pierre et Marie Curie—Paris VI
,
Paris
,
2016
.
11.
B.
Lipkens
and
D. T.
Blackstock
, “
Model experiment to study sonic boom propagation through turbulence. Part I: General results
,”
J. Acoust. Soc. Am.
103
(
1
),
148
158
(
1998
).
12.
M.
Averiyanov
,
S.
Ollivier
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Random focusing of nonlinear acoustic N-waves in fully developed turbulence: Laboratory scale experiment
,”
J. Acoust. Soc. Am.
130
(
6
),
3595
3607
(
2011
).
13.
S. S.
Stevens
, “
Perceived level of noise by Mark VII and decibels (E)
,”
J. Acoust. Soc. Am.
51
(
2B
),
575
601
(
1972
).
14.
A.
Loubeau
,
S. R.
Wilson
, and
J.
Rathsam
, “
Updated evaluation of sonic boom noise metrics
,”
J. Acoust. Soc. Am.
144
(
3
),
1706
(
2018
).
15.
K. A.
Bradley
,
C. M.
Hobbs
,
C. B.
Wilmer
,
V. W.
Sparrow
,
T. A.
Stout
,
J. M.
Morgenstern
,
K. H.
Underwood
,
D. J.
Maglieri
,
R. A.
Cowart
,
M. T.
Collmar
,
H.
Shen
, and
P.
Blanc-Benon
, “
Sonic booms in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms
,” NASA/CR-2020-220509,
NASA Langley Research Center
,
Hampton, VA
(
2020
).
16.
B. A.
Davy
and
D. T.
Blackstock
, “
Measurements of the refraction and diffraction of a short N wave by a gas-filled soap bubble
,”
J. Acoust. Soc. Am.
49
(
3B
),
732
737
(
1971
).
17.
A. D.
Pierce
, “
Spikes on sonic-boom pressure waveforms
,”
J. Acoust. Soc. Am.
44
(
4
),
1052
1061
(
1968
).
18.
H. S.
Ribner
,
P. J.
Morris
, and
W. H.
Chu
, “
Laboratory simulation of development of superbooms by atmospheric turbulence
,”
J. Acoust. Soc. Am.
53
(
3
),
926
928
(
1973
).
19.
S.
Ollivier
and
P.
Blanc-Benon
, “
Model experiments to study acoustic N-wave propagation through turbulent media
,” in
Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference
, Manchester, UK (May 10–12,
2004
).
20.
F.
Dagrau
,
M.
Rénier
,
R.
Marchiano
, and
F.
Coulouvrat
, “
Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation
,”
J. Acoust. Soc. Am.
130
(
1
),
20
32
(
2011
).
21.
R. V.
Khokhlov
,
K. A.
Naugol'nykh
, and
S. I.
Soluyan
, “
Waves of moderate amplitudes in absorbing media
,”
Acustica
14
(
5
),
248
253
(
1964
).
22.
E. A.
Zabolotskaya
and
R. V.
Khokhlov
, “
Quasi-plane waves in the nonlinear acoustics of confined beams
,”
Sov. Phys. Acoust.
15
,
35
40
(
1969
).
23.
R.
Leconte
,
R.
Marchiano
,
J.-C.
Chassaing
, and
F.
Coulouvrat
, “
Sensitivity of sonic boom propagation throughout a turbulent atmosphere
,”
J. Acoust. Soc. Am.
146
(
4
),
2782
(
2019
).
24.
R.
Leconte
,
R.
Marchiano
,
F.
Coulouvrat
, and
J.-C.
Chassaing
, “
Influence of atmospheric turbulence parameters on the propagation of sonic boom
” in
Proceedings of e-Forum Acusticum 2020
, Lyon, France (December 7–11,
2020
), pp.
979
980
.
25.
R.
Leconte
,
J.-C.
Chassaing
,
F.
Coulouvrat
, and
R.
Marchiano
, “
Simulation of the propagation of classical and low booms through turbulent wind fluctuations
,”
J. Acoust. Soc. Am.
149
(
4
),
A73
(
2021
).
26.
P.
Blanc-Benon
,
L.
Dallois
, and
D.
Juvé
, “
Long range sound propagation in a turbulent atmosphere within the parabolic approximation
,”
Acta Acust. united Ac.
87
,
659
669
(
2001
).
27.
L. L.
Locey
and
V. W.
Sparrow
, “
Modeling atmospheric turbulence as a filter for sonic boom propagation
,”
Noise Control Eng. J.
55
(
6
),
495
–503 (
2007
).
28.
T. A.
Stout
,
V. W.
Sparrow
, and
P.
Blanc-Benon
, “
Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence
,”
J. Acoust. Soc. Am.
149
(
5
),
3250
3260
(
2021
).
29.
F.
Coulouvrat
, “
New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere
,”
Wave Motion
49
(
1
),
50
63
(
2012
).
30.
M. J.
Lighthill
,
Waves in Fluids
(
Cambridge University
,
Cambridge, UK
,
1978
).
31.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
(
Cambridge University
,
Cambridge, UK
,
1982
).
32.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
(
3
),
506
517
(
1968
).
33.
J.
Goodman
,
Introduction to Fourier Optics
(
Roberts & Co
.,
Englewood, CO
,
2005
).
34.
L.
Ganjehi
,
R.
Marchiano
,
F.
Coulouvrat
, and
J.-L.
Thomas
, “
Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium
,”
J. Acoust. Soc. Am.
124
(
1
),
57
71
(
2008
).
35.
J.
Crank
and
P.
Nicolson
, “
A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type
,”
Math. Proc. Cambridge Philos. Soc.
43
(
1
),
50
67
(
1947
).
36.
W. D.
Hayes
,
R. C.
Haefeli
, and
H. E.
Kulsrud
, “
Sonic boom propagation in a stratified atmosphere, with a computer program
,” NASA/CR-1299,
NASA
,
Washington, DC
(
1969
).
37.
F.
Coulouvrat
, “
A quasi-analytical shock solution for general nonlinear progressive waves
,”
Wave Motion
46
(
2
),
97
107
(
2009
).
38.
W. M.
Spurlock
,
M. J.
Aftosmis
, and
M.
Nemec
, “
Cartesian mesh simulations for the third AIAA sonic boom prediction workshop
,” in
Proceedings of the AIAA Scitech 2021 Forum
, Online (January 11–15 and 19–21,
2021
).
39.
J. B.
Lonzaga
, “
Recent enhancements to NASA's PCBoom sonic boom propagation code
,” in
Proceedings of the AIAA Aviation 2019 Forum
, Dallas, TX (June 17–21,
2019
).
40.
J. A.
Page
,
J. B.
Lonzaga
,
M. J.
Shumway
,
S. R.
Kaye
,
R. S.
Downs
,
A.
Loubeau
, and
W. J.
Doebler
, “
PCBoom version 7.1 user's guide
,” NASA/TM 20205007703,
Langley Research Center
,
Hampton, VA
(
2020
).
41.
C.
Klipp
, “
Turbulence anisotropy in the near-surface atmosphere and the evaluation of multiple outer length scales
,”
Boundary-Layer Meteorol.
151
(
1
),
57
77
(
2014
).
42.
R.
Frehlich
,
L.
Cornman
, and
R.
Sharman
, “
Simulation of three-dimensional turbulent velocity fields
,”
J. Appl. Meteorol.
40
(
2
),
246
258
(
2001
).
43.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechanics: Mechanics of Turbulence
(
Dover
,
Mineola, NY
,
2007
).
44.
T.
von Karman
, “
Progress in the statistical theory of turbulence
,”
Proc. Natl. Acad. Sci. U.S.A.
34
(
11
),
530
539
(
1948
).
45.
D. K.
Wilson
, “
A three-dimensional correlation/spectral model for turbulent velocities in a convective boundary layer
,”
Boundary-Layer Meteorol.
85
(
1
),
35
52
(
1997
).
46.
M.
Shinozuka
, “
Simulation of multivariate and multidimensional random processes
,”
J. Acoust. Soc. Am.
49
(
1B
),
357
368
(
1971
).
47.
D. K.
Wilson
, “
Three-dimensional correlation and spectral functions for turbulent velocities in homogeneous and surface-blocked boundary layers
,” Army Research Laboratory, Adelphi, MD (
1997
).
48.
V. E.
Ostashev
and
D. K.
Wilson
,
Acoustics in Moving Inhomogeneous Media
(
CRC
,
Boca Raton, FL
,
2016
).
49.
V. A.
Kulkarny
and
B. S.
White
, “
Focusing of waves in turbulent inhomogeneous media
,”
Phys. Fluids
25
(
10
),
1770
–1784 (
1982
).
50.
P.
Blanc-Benon
,
D.
Juvé
, and
G.
Comte-Bellot
, “
Occurrence of caustics for high-frequency acoustic waves propagating through turbulent fields
,”
Theor. Comput. Fluid Dyn.
2
(
5
),
271
278
(
1991
).
51.
O.
Rudenko
and
B.
Enflo
, “
Nonlinear N-wave propagation through a one-dimensional phase screen
,”
Acta Acust. united Ac.
86
(
2
),
229
238
(
2000
).
52.
G.
Jackson
and
H.
Leventhall
, “
Calculation of the perceived level of noise (PLdB) using Stevens' method (Mark VII)
,”
Appl. Acoust.
6
(
1
),
23
34
(
1973
).
53.
T. W.
Anderson
and
D. A.
Darling
, “
A test of goodness of fit
,”
J. Am. Stat. Assoc.
49
(
268
),
765
769
(
1954
).
54.
A. N.
Kolmogorov
, “
Sulla determinazione empirica di una legge di distribuzione” (“On the empirical determination of a distribution law”)
,
Inst. Ital. Attuari Giorn.
4
,
83
91
(
1933
).
55.
R. L.
Wasserstein
and
N. A.
Lazar
, “
The ASA statement on p-values: Context, process, and purpose
,”
Am. Stat.
70
(
2
),
129
133
(
2016
).
You do not currently have access to this content.