Mechanical waves propagating in soft materials play an important role in physiology. They can be natural, such as the cochlear wave in the inner ear of mammalians, or controlled, such as in elastography in the context of medical imaging. In a recent study, Lanoy, Lemoult, Eddi, and Prada [Proc. Natl. Acad. Sci. U.S.A. 117(48), 30186–30190 (2020)] implemented an experimental tabletop platform that allows direct observation of in-plane guided waves in a soft strip. Here, a detailed description of the setup and signal processing steps is presented as well as the theoretical framework supporting them. One motivation is to propose a tutorial experiment for visualizing the propagation of guided elastic waves. Last, the versatility of the experimental platform is exploited to illustrate experimentally original features of wave physics, such as backward modes, stationary modes, and Dirac cones.

1.
I.
Levental
,
P. C.
Georges
, and
P. A.
Janmey
, “
Soft biological materials and their impact on cell function
,”
Soft Matter
3
(
3
),
299
306
(
2007
).
2.
M. A.
Wozniak
and
C. S.
Chen
, “
Mechanotransduction in development: A growing role for contractility
,”
Nat. Rev. Mol. Cell Biol.
10
(
1
),
34
43
(
2009
).
3.
S.
Kumar
and
V. M.
Weaver
, “
Mechanics, malignancy, and metastasis: The force journey of a tumor cell
,”
Cancer Metastasis Rev.
28
(
1
),
113
127
(
2009
).
4.
P.
Kalita
and
R.
Schaefer
, “
Mechanical models of artery walls
,”
Arch. Comput. Methods Eng.
15
(
1
),
1
36
(
2008
).
5.
P. R.
Murray
and
S. L.
Thomson
, “
Synthetic, multi-layer, self-oscillating vocal fold model fabrication
,”
J. Vis. Exp.
58
,
e3498
(
2011
).
6.
C.
Vannelli
,
J.
Moore
,
J.
McLeod
,
D.
Ceh
, and
T.
Peters
, “
Dynamic heart phantom with functional mitral and aortic valves
,”
Proc. SPIE
9415
,
941503
(
2015
).
7.
G. R.
Gossweiler
,
C. L.
Brown
,
G. B.
Hewage
,
E.
Sapiro-Gheiler
,
W. J.
Trautman
,
G. W.
Welshofer
, and
S. L.
Craig
, “
Mechanochemically active soft robots
,”
ACS Appl. Mater. Interfaces
7
(
40
),
22431
22435
(
2015
).
8.
L.
Marechal
,
P.
Balland
,
L.
Lindenroth
,
F.
Petrou
,
C.
Kontovounisios
, and
F.
Bello
, “
Toward a common framework and database of materials for soft robotics
,”
Soft Robot.
8
(
3
),
284
297
(
2021
).
9.
E.
Siéfert
,
E.
Reyssat
,
J.
Bico
, and
B.
Roman
, “
Bio-inspired pneumatic shape-morphing elastomers
,”
Nat. Mater.
18
(
1
),
24
28
(
2019
).
10.
S. Y.
Kim
,
R.
Baines
,
J.
Booth
,
N.
Vasios
,
K.
Bertoldi
, and
R.
Kramer-Bottiglio
, “
Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae
,”
Nat. Commun.
10
(
1
),
3464
(
2019
).
11.
L.
Sandrin
,
M.
Tanter
,
J.-L.
Gennisson
,
S.
Catheline
, and
M.
Fink
, “
Shear elasticity probe for soft tissues with 1-D transient elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
(
4
),
436
446
(
2002
).
12.
J.
Foucher
,
E.
Chanteloup
,
J.
Vergniol
,
L.
Castéra
,
B. L.
Bail
,
X.
Adhoute
,
J.
Bertet
,
P.
Couzigou
, and
V.
de Lédinghen
, “
Diagnosis of cirrhosis by transient elastography (FibroScan): A prospective study
,”
Gut
55
(
3
),
403
408
(
2006
).
13.
J.-L.
Gennisson
,
T.
Deffieux
,
M.
Fink
, and
M.
Tanter
, “
Ultrasound elastography: Principles and techniques
,”
Diagn. Interv. Imaging
94
(
5
),
487
495
(
2013
).
14.
M.
Couade
,
M.
Pernot
,
C.
Prada
,
E.
Messas
,
J.
Emmerich
,
P.
Bruneval
,
A.
Criton
,
M.
Fink
, and
M.
Tanter
, “
Quantitative assessment of arterial wall biomechanical properties using shear wave imaging
,”
Ultrasound Med. Biol.
36
(
10
),
1662
1676
(
2010
).
15.
A. V.
Astaneh
,
M. W.
Urban
,
W.
Aquino
,
J. F.
Greenleaf
, and
M. N.
Guddati
, “
Arterial waveguide model for shear wave elastography: Implementation and in vitro validation
,”
Phys. Med. Biol.
62
(
13
),
5473
5494
(
2017
).
16.
E.
Maksuti
,
F.
Bini
,
S.
Fiorentini
,
G.
Blasi
,
M. W.
Urban
,
F.
Marinozzi
, and
M.
Larsson
, “
Influence of wall thickness and diameter on arterial shear wave elastography: A phantom and finite element study
,”
Phys. Med. Biol.
62
(
7
),
2694
2718
(
2017
).
17.
I. Z.
Nenadic
,
M. W.
Urban
,
S. A.
Mitchell
, and
J. F.
Greenleaf
, “
Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids
,”
Phys. Med. Biol.
56
(
7
),
2245
2264
(
2011
).
18.
I. Z.
Nenadic
,
M. W.
Urban
,
S.
Aristizabal
,
S. A.
Mitchell
,
T. C.
Humphrey
, and
J. F.
Greenleaf
, “
On Lamb and Rayleigh wave convergence in viscoelastic tissues
,”
Phys. Med. Biol.
56
(
20
),
6723
6738
(
2011
).
19.
J.
Brum
,
M.
Bernal
,
J.
Gennisson
, and
M.
Tanter
, “
In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis
,”
Phys. Med. Biol.
59
(
3
),
505
523
(
2014
).
20.
H.-C.
Liou
,
F.
Sabba
,
A. I.
Packman
,
G.
Wells
, and
O.
Balogun
, “
Nondestructive characterization of soft materials and biofilms by measurement of guided elastic wave propagation using optical coherence elastography
,”
Soft Matter
15
(
4
),
575
586
(
2019
).
21.
J.
Griesbauer
,
S.
Bössinger
,
A.
Wixforth
, and
M. F.
Schneider
, “
Propagation of 2D pressure pulses in lipid monolayers and its possible implications for biology
,”
Phys. Rev. Lett.
108
,
198103
(
2012
).
22.
M.
Hirano
, “
Morphological structure of the vocal cord as a vibrator and its variations
,”
Folia Phoniatr. Logop.
26
(
2
),
89
94
(
1974
).
23.
L.
Robles
and
M. A.
Ruggero
, “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
(
3
),
1305
1352
(
2001
).
24.
T.
Reichenbach
and
A.
Hudspeth
, “
The physics of hearing: Fluid mechanics and the active process of the inner ear
,”
Rep. Prog. Phys.
77
(
7
),
076601
(
2014
).
25.
D.
Royer
and
E.
Dieulesaint
,
Elastic Waves in Solids I: Free and Guided Propagation
(
Springer
,
Berlin
,
1999
).
26.
D. N.
Alleyne
and
P.
Cawley
, “
The interaction of Lamb waves with defects
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
(
3
),
381
397
(
1992
).
27.
Z.
Su
,
L.
Ye
, and
Y.
Lu
, “
Guided Lamb waves for identification of damage in composite structures: A review
,”
J. Sound Vib.
295
(
3
),
753
780
(
2006
).
28.
S.
Bramhavar
,
C.
Prada
,
A. A.
Maznev
,
A. G.
Every
,
T. B.
Norris
, and
T. W.
Murray
, “
Negative refraction and focusing of elastic Lamb waves at an interface
,”
Phys. Rev. B
83
(
1
),
014106
(
2011
).
29.
F. D.
Philippe
,
T. W.
Murray
, and
C.
Prada
, “
Focusing on plates: Controlling guided waves using negative refraction
,”
Sci. Rep.
5
,
11112
(
2015
).
30.
I.
Tolstoy
and
E.
Usdin
, “
Wave propagation in elastic plates: Low and high mode dispersion
,”
J. Acoust. Soc. Am.
29
(
1
),
37
42
(
1957
).
31.
S. D.
Holland
and
D. E.
Chimenti
, “
Air-coupled acoustic imaging with zero-group-velocity Lamb modes
,”
Appl. Phys. Lett.
83
(
13
),
2704
2706
(
2003
).
32.
C.
Prada
,
O.
Balogun
, and
T.
Murray
, “
Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates
,”
Appl. Phys. Lett.
87
(
19
),
194109
(
2005
).
33.
C.
Prada
,
D.
Clorennec
, and
D.
Royer
, “
Local vibration of an elastic plate and zero-group velocity Lamb modes
,”
J. Acoust. Soc. Am.
124
(
1
),
203
212
(
2008
).
34.
M.
Lanoy
,
F.
Lemoult
,
A.
Eddi
, and
C.
Prada
, “
Dirac cones and chiral selection of elastic waves in a soft strip
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
48
),
30186
30190
(
2020
).
35.
S.
Wildeman
, “
Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop
,”
Exp. Fluids
59
(
6
),
97
(
2018
).
36.
S.
Wildeman
, “
swildeman/dicflow
,” https://github.com/swildeman/dicflow (Last viewed May
2022
).
37.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Wiley
,
New York
,
1973
).
38.
In the polymer or rheology communities, the Lamé coefficient μ is noted G
.
39.
Measured at 3 MHz with a pulse echo method in a bulk sample.
40.
D. E.
Muller
, “
A method for solving algebraic equations using an automatic computer
,”
Math. Comput.
10
,
208
215
(
1956
).
41.
A. A.
Krushynska
and
V. V.
Meleshko
, “
Normal waves in elastic bars of rectangular cross section
,”
J. Acoust. Soc. Am.
129
(
3
),
1324
1335
(
2011
).
42.
M.
Cross
and
R.
Lifshitz
, “
Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems
,”
Phys. Rev. B
64
,
085324
(
2001
).
43.
J.
Laurent
,
D.
Royer
, and
C.
Prada
, “
In-plane backward and zero-group-velocity guided modes in rigid and soft strips
,”
J. Acoust. Soc. Am.
147
,
1302
1310
(
2020
).
44.
R. D.
Mindlin
,
An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
, edited by
J.
Yang
(
World Scientific
,
Singapore
,
2006
).
45.
D. M.
Stobbe
and
T. W.
Murray
, “
Conical dispersion of Lamb waves in elastic plates
,”
Phys. Rev. B
96
(
14
),
144101
(
2017
).
46.
A.
Maznev
, “
Dirac cone dispersion of acoustic waves in plates without phononic crystals
,”
J. Acoust. Soc. Am.
135
(
2
),
577
580
(
2014
).
47.
X.
Huang
,
Y.
Lai
,
Z. H.
Hang
,
H.
Zheng
, and
C.
Chan
, “
Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials
,”
Nat. Mater.
10
(
8
),
582
586
(
2011
).
48.
R. D.
Mindlin
and
M. A.
Medick
, “
Extensional vibrations of elastic plates
,”
J. Appl. Mech.
26
(
4
),
561
569
(
1959
).
49.
B.
Gérardin
,
J.
Laurent
,
C.
Prada
, and
A.
Aubry
, “
Negative reflection of Lamb waves at a free edge: Tunable focusing and mimicking phase conjugation
,”
J. Acoust. Soc. Am.
140
(
1
),
591
600
(
2016
).
50.
Again, in the polymer or rheology communities, the Lamé coefficient μ is noted G, which leads to the real part G and the imaginary part G.
51.
F. C.
Meral
,
T. J.
Royston
, and
R. L.
Magin
, “
Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources
,”
J. Acoust. Soc. Am.
126
(
6
),
3278
3285
(
2009
).
52.
S. P.
Kearney
,
A.
Khan
,
Z.
Dai
, and
T. J.
Royston
, “
Dynamic viscoelastic models of human skin using optical elastography
,”
Phys. Med. Biol.
60
(
17
),
6975
6990
(
2015
).
53.
E.
Rolley
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
A flexible rheometer design to measure the visco-elastic response of soft solids over a wide range of frequency
,”
Rev. Sci. Instrum.
90
(
2
),
023906
(
2019
).
54.
Y.
Wan
,
Y.
Xiong
, and
S.
Zhang
, “
Temperature dependent dynamic mechanical properties of magnetorheological elastomers: Experiment and modeling
,”
Composite Struct.
202
,
768
773
(
2018
).
You do not currently have access to this content.