Atmospheric turbulence is known to randomly distort the “N-wave” sonic boom signature emitted by conventional, unshaped supersonic aircraft. To predict the effect of turbulence on the signature from shaped aircraft, a numerical model has been developed based on the nonlinear Khokhlov–Zabolotskaya–Kuznetzov (KZK) propagation equation coupled with an approximate atmospheric turbulence model. The effects of turbulence on an archetypal N-wave and a shaped signature are compared via a series of numerical experiments propagating the signatures through multiple random realizations of turbulence in varying atmospheric and propagation conditions. The simulated results generally show that the variance of the Stevens Mark VII perceived level metric related to loudness is decreased by boom shaping and that the shocks in the shaped signature are less distorted than for the N-wave. Additionally, the probabilities of high-level and high-amplitude signatures are decreased for the shaped signature. Thus, the model predicts that boom shaping results in a signature with more consistent loudness and amplitude after propagation through turbulence.

1.
Averiyanov
,
M.
,
Blanc-Benon
,
P.
,
Cleveland
,
R. O.
, and
Khokhlova
,
V.
(
2011a
). “
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media
,”
J. Acoust. Soc. Am.
129
,
1760
1772
.
2.
Averiyanov
,
M.
,
Ollivier
,
S.
,
Khokhlova
,
V.
, and
Blanc-Benon
,
P.
(
2011b
). “
Random focusing of nonlinear acoustic N-waves in fully developed turbulence: Laboratory scale experiment
,”
J. Acoust. Soc. Am.
130
,
3595
3607
.
3.
Aver'yanov
,
M.
,
Khokhlova
,
V.
,
Sapozhnikov
,
O.
,
Blanc-Benon
,
P.
, and
Cleveland
,
R.
(
2006
). “
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
,”
Acoust. Phys.
52
,
623
632
.
4.
Blanc-Benon
,
P.
,
Lipkens
,
B.
,
Dallois
,
L.
,
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
2002
). “
Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation
,”
J. Acoust. Soc. Am.
111
,
487
498
.
5.
Bradley
,
K.
,
Hobbs
,
C.
,
Wilmer
,
C.
,
Sparrow
,
V.
,
Stout
,
T.
,
Morgenstern
,
J.
,
Cowart
,
R.
,
Collmar
,
M.
,
Underwood
,
K.
,
Maglieri
,
D.
,
Shen
,
H.
, and
Blanc-Benon
,
P.
(
2020
). “
Sonic booms in atmospheric turbulence (SonicBAT): The influence of turbulence on shaped sonic booms
,” NASA Contractor Report 20200002482 (
NASA Langley Research Center
,
Hampden, VA
).
6.
Chevret
,
P.
,
Blanc‐Benon
,
P.
, and
Juvé
,
D.
(
1996
). “
A numerical model for sound propagation through a turbulent atmosphere near the ground
,”
J. Acoust. Soc. Am.
100
,
3587
3599
.
7.
Cleveland
,
R. O.
,
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
1996
). “
Time‐domain modeling of finite‐amplitude sound in relaxing fluids
,”
J. Acoust. Soc. Am.
99
,
3312
3318
.
8.
Haering
,
E.
,
Cliatt
,
L.
,
Bunce
,
T.
,
Gabrielson
,
T.
,
Sparrow
,
V.
, and
Locey
,
L.
(
2008
). “
Initial results from the variable intensity sonic boom propagation database
,” in
Proceedings of AIAA 2008-3034, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference)
, May 5–7, Vancouver, Canada.
9.
Hamilton
,
M. F.
, and
Blackstock
,
D. T.
(
1998
).
Nonlinear Acoustics
(
Academic
,
San Diego
).
10.
Hammerton
,
P.
(
2001
). “
Effect of molecular relaxation on the propagation of sonic booms through a stratified atmosphere
,”
Wave Motion
33
,
359
377
.
11.
Hobbs
,
C.
, and
Page
,
J.
(
2011
). “
PCBoom model prediction comparisons with flight test measurement data
,” in
Proceedings of AIAA 2011-1277, 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, January 4–7, Orlando, FL.
12.
Kanamori
,
M.
,
Takahashi
,
T.
,
Naka
,
Y.
,
Makino
,
Y.
,
Takahashi
,
H.
, and
Ishikawa
,
H.
(
2017
). “
Numerical evaluation of effect of atmospheric turbulence on sonic boom observed in D-SEND#2 flight test
,” in
Proceedings of AIAA 2017-0278, 55th AIAA Aerospace Sciences Meeting
, January 9–13, Grapevine, TX.
13.
Leatherwood
,
J. D.
,
Sullivan
,
B. M.
,
Shepherd
,
K. P.
,
McCurdy
,
D. A.
, and
Brown
,
S. A.
(
2002
). “
Summary of recent NASA studies of human response to sonic booms
,”
J. Acoust. Soc. Am.
111
,
586
598
.
14.
Lee
,
Y.-S.
(
1993
). “
Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluids
,” Ph.D. dissertation,
University of Texas
,
Austin, TX
.
15.
Lee
,
Y.-S.
, and
Hamilton
,
M. F.
(
1995
). “
Time‐domain modeling of pulsed finite‐amplitude sound beams
,”
J. Acoust. Soc. Am.
97
,
906
917
.
16.
Lipkens
,
B.
, and
Blackstock
,
D. T.
(
1998
). “
Model experiment to study sonic boom propagation through turbulence. Part I: General results
,”
J. Acoust. Soc. Am.
103
,
148
158
.
17.
Locey
,
L. L.
, and
Sparrow
,
V. W.
(
2007
). “
Modeling atmospheric turbulence as a filter for sonic boom propagation
,”
Noise Control Eng. J.
55
,
495
503
.
18.
Luquet
,
D.
(
2016
). “
3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom
,” Ph.D. dissertation,
Université Pierre et Marie Curie-Paris VI
,
Paris
.
19.
Maglieri
,
D. J.
,
Bobbitt
,
P. J.
,
Plotkin
,
K. J.
,
Shepherd
,
K. P.
,
Coen
,
P. G.
, and
Richwine
,
D. M.
(
2014
). “
Sonic boom: Six decades of research
,” NASA/SP-2014-622 (
NASA Langley Research Center
,
Hampden, VA
).
20.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
(
CRC
,
Boca Raton, FL
).
21.
Salze
,
É.
,
Yuldashev
,
P.
,
Ollivier
,
S.
,
Khokhlova
,
V.
, and
Blanc-Benon
,
P.
(
2014
). “
Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence
,”
J. Acoust. Soc. Am.
136
,
556
566
.
22.
Shepherd
,
K. P.
, and
Sullivan
,
B. M.
(
1991
). “
A loudness calculation procedure applied to shaped sonic booms
,” NASA Technical Paper 3134 (
NASA Langley Research Center
,
Hampden, VA
).
23.
Stevens
,
S.
(
1972
). “
Perceived level of noise by Mark VII and decibels (E)
,”
J. Acoust. Soc. Am.
51
,
575
601
.
24.
Stout
,
T. A.
(
2018
). “
Simulation of N-wave and shaped supersonic signature turbulent variations
,” Ph.D. dissertation (
The Pennsylvania State University
,
State College, PA
).
25.
Stout
,
T. A.
, and
Sparrow
,
V. W.
(
2018a
). “
Nonlinear propagation of shaped supersonic signatures through turbulence
,”
Proc. Mtgs. Acoust.
34
,
045011
.
26.
Stout
,
T. A.
, and
Sparrow
,
V. W.
(
2018b
). “
Time-domain spline interpolation in a simulation of N-wave propagation through turbulence
,”
J. Acoust. Soc. Am.
144
,
EL229
EL235
.
27.
Stout
,
T. A.
,
Sparrow
,
V. W.
, and
Blanc-Benon
,
P.
(
2021
). “
Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence
,”
J. Acoust. Soc. Am.
149
,
3250
3260
.
28.
Takahashi
,
H.
,
Kanamori
,
M.
,
Naka
,
Y.
, and
Makino
,
Y.
(
2017
). “
Characteristic scales of atmospheric turbulence responsible for sonic boom propagation
,” in
Proceedings of AIAA 2017-0279, 55th AIAA Aerospace Sciences Meeting
, January 9–13, Grapevine, TX.
29.
Wilson
,
D. K.
(
2000
). “
A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings
,”
J. Acoust. Soc. Am.
108
,
2021
2038
.
30.
Wintzer
,
M.
, and
Ordaz
,
I.
(
2015
). “
Under-track CFD-based shape optimization for a low-boom demonstrator concept
,” in
Proceedings of the 33rd AIAA Applied Aerodynamics Conference
, June 22–26, Dallas, TX, p.
2260
.
31.
Yuldashev
,
P. V.
,
Ollivier
,
S.
,
Karzova
,
M. M.
,
Khokhlova
,
V. A.
, and
Blanc-Benon
,
P.
(
2017
). “
Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence
,”
J. Acoust. Soc. Am.
142
,
3402
3415
.
You do not currently have access to this content.