A polyurethane-based tissue mimicking material (TMM) and blood mimicking material (BMM) for the acoustic and thermal characterization of high intensity therapeutic ultrasound (HITU) devices has been developed. Urethane powder and other chemicals were dispersed into either a high temperature hydrogel matrix (gellan gum) or degassed water to form the TMM and BMM, respectively. The ultrasonic properties of both TMM and BMM, including attenuation coefficient, speed of sound, acoustical impedance, and backscatter coefficient, were characterized at room temperature. The thermal conductivity and diffusivity, BMM viscosity, and TMM Young's modulus were also measured. Importantly, the attenuation coefficient has a nearly linear frequency dependence, as is the case for most soft tissues and blood at 37 °C. Their mean values are 0.61f1.2 dB cm−1 (TMM) and 0.2f1.1 dB cm−1 (BMM) based on measurements from 1 to 8 MHz using a time delay spectrometry (TDS) system. Most of the other relevant physical parameters are also close to the reported values of soft tissues and blood. These polyurethane-based TMM and BMM are appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HITU devices.

1.
Ambrogio
,
S.
,
Baêsso
,
R.
,
Gomis
,
A.
,
Rivens
,
I.
,
ter Haar
,
G.
,
Zeqiri
,
B.
,
Ramnarine
,
K.
,
Fedele
,
F.
, and
Miloro
,
P.
(
2020
). “
A polyvinyl alcohol-based thermochromic material for ultrasound therapy phantoms
,”
Ultrasound Med Biol.
46
,
3135
3144
.
2.
Bailey
,
M.
,
Khokhlova
,
V.
,
Sapozhnikov
,
O.
,
Kargl
,
S.
, and
Crum
,
L.
(
2003
). “
Physical mechanisms of the therapeutic effect of ultrasound
,”
Acoust. Phys.
49
,
369
464
.
3.
Boote
,
E. J.
, and
Zagzebski
,
J. A.
(
1988
). “
Performance tests of Doppler ultrasound equipment with a tissue and blood mimicking phantom
,”
J. Ultrasound Med.
7
,
137
47
.
4.
Cortela
,
G.
,
Negreira
,
C.
, and
Pereira
,
W.
(
2020
). “
Durability study of a gellan gum-based tissue-mimicking phantom for ultrasonic thermal therapy
,”
J. Acoust. Soc. Am.
147
,
1531
1541
.
5.
Dantec Dynamics
(
2022
). https://www.dantecdynamics.com/components/seeding-materials/ (Last viewed April 29, 2022).
6.
Duck
,
F.
(
1990
).
Physical Properties of Tissue: A Complete Reference Book
(
Academic Press
,
London
).
7.
Ebbini
,
E.
, and
ter Haar
,
G.
(
2015
). “
Ultrasound-guided therapeutic focused ultrasound: Current status and future directions
,”
Int. J. Hyperthermia
31
,
77
89
.
8.
Eranki
,
A.
,
Mikhail
,
A. S.
,
Negussie
,
A. H.
,
Katti
,
P. S.
,
Wood
,
B. J.
, and
Partanen
,
A.
(
2019
). “
Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications
,”
Int. J. Hyperthermia
36
,
518
529
.
9.
Gammell
,
P.
,
Maruvada
,
S.
, and
Harris
,
G.
(
2007
). “
An ultrasonic time delay spectrometry (TDS) system employing digital processing
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Contr.
54
,
1036
1044
.
10.
Greaby
,
R.
,
Zderic
,
V.
, and
Vaezy
,
S.
(
2007
). “
Pulsatile flow phantom for ultrasound image-guided HIFU treatment of vascular injuries
,”
Ultrasound Med. Biol.
33
,
1269
1276
.
11.
Guntur
,
S. R.
, and
Choi
,
M. J.
(
2014
). “
An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high intensity focused ultrasound
,”
Ultrasound Med. Biol.
40
,
2680
2691
.
12.
Holt
,
R.
, and
Roy
,
R.
(
2001
). “
Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material
,”
Ultrasound Med. Biol.
27
,
1399
1412
.
13.
Hynynen
,
K.
,
McDannold
,
N.
,
Vykhodtseva
,
N.
, and
Jolesz
,
F. A.
(
2001
). “
Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits
,”
Radiology
220
,
640
646
.
14.
ICRU
(
1998
). “
Tissue substitutes, phantoms and computational modeling in medical Ultrasound
,”
International Commission on Radiation Units and Measurements
, Bethesda, MD, Report No. 61.
15.
Khokhlova
,
V. A.
,
Fowlkes
,
J. B.
,
Roberts
,
W. W.
,
Schade
,
G. R.
,
Xu
,
Z.
,
Khokhlova
,
T. D.
,
Hall
,
T. L.
,
Maxwell
,
D.
,
Wang
,
Y. N.
, and
Cain
,
C. A.
(
2015
). “
Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications
,”
Int. J. Hyperthermia.
31
,
145
162
.
16.
King
,
R.
,
Liu
,
Y.
,
Maruvada
,
S.
,
Herman
,
B.
,
Wear
,
K.
, and
Harris
,
G.
(
2011
). “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans Ultrason. Ferroelectr. Freq. Controll.
58
,
1397
1405
.
17.
Lafon
,
C.
,
Zderic
,
V.
,
Noble
,
M.
,
Yuen
,
J.
,
Kaczkowski
,
P.
,
Sapozhnikov
,
O.
,
Crum
,
L.
, and
Vaezy
,
S.
(
2005
). “
Gel phantom for use in high-intensity focused ultrasound dosimetry
,”
Ultrasound Med. Biol.
31
,
1383
1389
.
18.
Liu
,
Y.
,
Maruvada
,
S.
,
Herman
,
B.
, and
Harris
,
G.
(
2010
). “
Egg white as a blood coagulation surrogate
,”
J. Acoust. Soc. Am.
128
,
480
489
.
19.
Maruvada
,
S.
,
Liu
,
Y.
,
Gammell
,
P.
, and
Wear
,
K.
(
2018
). “
Broadband characterization of plastic and high intensity therapeutic ultrasound phantoms using time delay spectrometry-With validation using Kramers-Kronig relations
,”
J. Acoust. Soc. Am.
143
,
3365
3384
.
20.
Maruvada
,
S.
,
Liu
,
Y.
,
Soneson
,
J.
,
Herman
,
B.
, and
Harris
,
G.
(
2015
). “
Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields
,”
J. Acoust. Soc. Am.
137
,
1704
1713
.
21.
McDannold
,
N.
,
Vykhodtseva
,
N.
, and
Hynynen
,
K.
(
2008
). “
Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index
,”
Ultrasound Med Biol.
34
,
834
840
.
22.
McGarry
,
C. K.
,
Grattan
,
L. J.
,
Ivory
,
A. M.
,
Leek
,
F.
,
Liney
,
G. P.
,
Liu
,
Y.
,
Miloro
,
P.
,
Rai
,
R.
,
Robinson
,
A. P.
,
Shih
,
A. J.
,
Zeqiri
,
B.
, and
Clark
,
C. H.
(
2020
). “
Tissue mimicking materials for imaging and therapy phantoms: A review
,”
Phys. Med. Biol.
65
,
1
19
.
23.
Oglat
,
A.
,
Suardi
,
N.
,
Matjafri
,
M.
,
Oqlat
,
M.
,
Abdelrahman
,
M.
, and
Oqlat
,
A.
(
2018
). “
A review of suspension-scattered particles used in blood-mimicking fluid for Doppler ultrasound imaging
,”
J. Med. Ultrasound.
26
,
68
76
.
24.
Palumbo
,
P.
,
Daffinà
,
J.
,
Bruno
,
F.
,
Arrigoni
,
F.
,
Splendiani
,
A.
,
Di Cesare
,
E.
,
Barile
,
A.
, and
Masciocchi
,
C.
(
2021
). “
Basics in magnetic resonance guided focused ultrasound: Technical basis and clinical application. A brief overview
,”
Acta Biomed.
10
,
1
11
.
25.
Preston
,
R.
,
Shaw
,
A.
, and
Zeqiri
,
B.
(
1991
). “
Prediction of in situ exposure to ultrasound: An acoustical attenuation method
,”
Ultrasound Med. Biol.
17
,
317
332
.
26.
Samavat
,
H.
, and
Evans
,
J.
(
2006
). “
An ideal blood mimicking fluid for Doppler ultrasound phantoms
,”
J. Med. Phys.
31
,
275
278
.
27.
ter Haar
,
G.
, and
Coussios
,
C.
(
2007
). “
High intensity focused ultrasound: Physical principles and devices
,”
Int. J. Hyperthermia.
23
,
89
104
.
28.
Wear
,
K.
,
Stiles
,
T.
,
Frank
,
G.
,
Madsen
,
E.
,
Cheng
,
F.
,
Feleppa
,
E.
,
Hall
,
C.
,
Kim
,
B.
,
Lee
,
P.
,
O'Brien
,
W.
,
Oelze
,
M.
,
Raju
,
B.
,
Shung
,
K.
,
Wilson
,
T.
, and
Yuan
,
J.
(
2005
). “
Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz
,”
J. Ultrasound Med.
24
,
1235
1250
.
29.
Xu
,
Z.
,
Hall
,
T. L.
,
Vlaisavljevich
,
E.
, and
Lee
,
F. T.
, Jr.
(
2021
). “
Histotripsy: The first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound
,”
Int. J. Hyperthermia
38
,
561
575
.
You do not currently have access to this content.