Phase aberration induced by soft tissue inhomogeneities often complicates high-intensity focused ultrasound (HIFU) therapies by distorting the field and, previously, we designed and fabricated a bilayer gel phantom to reproducibly mimic that effect. A surface pattern containing size scales relevant to inhomogeneities of a porcine body wall was introduced between gel materials with fat- and muscle-like acoustic properties—ballistic and polyvinyl alcohol gels. Here, the phantom design was refined to achieve relevant values of ultrasound absorption and scattering and make it more robust, facilitating frequent handling and use in various experimental arrangements. The fidelity of the interfacial surface of the fabricated phantom to the design was confirmed by three-dimensional ultrasound imaging. The HIFU field distortions—displacement of the focus, enlargement of the focal region, and reduction of focal pressure—produced by the phantom were characterized using hydrophone measurements with a 1.5 MHz 256-element HIFU array and found to be similar to those induced by an ex vivo porcine body wall. A phase correction approach was used to mitigate the aberration effect on nonlinear focal waveforms and enable boiling histotripsy treatments through the phantom or body wall. The refined phantom represents a practical tool to explore HIFU therapy systems capabilities.

1.
C. R.
Hill
and
G. R.
ter Haar
, “
Review article: High intensity focused ultrasound-potential for cancer treatment
,”
Br. J. Radiol.
68
,
1296
1303
(
1995
).
2.
M. R.
Bailey
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
S. G.
Kargl
, and
L. A.
Crum
, “
Physical mechanisms of the therapeutic effect of ultrasound (a review)
,”
Acoust. Phys.
49
,
369
388
(
2003
).
3.
T. D.
Khokhlova
,
M. S.
Canney
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
L. A.
Crum
, and
M. R.
Bailey
, “
Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling
,”
J. Acoust. Soc. Am.
130
,
3498
3510
(
2011
).
4.
V. A.
Khokhlova
,
J. B.
Fowlkes
,
W. W.
Roberts
,
G. R.
Schade
,
Z.
Xu
,
T. D.
Khokhlova
,
T. L.
Hall
,
A. D.
Maxwell
,
Y. N.
Wang
, and
C. A.
Cain
, “
Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications
,”
Int. J. Hyperthermia
31
,
145
162
(
2015
).
5.
J. E.
Kennedy
, “
High-intensity focused ultrasound in the treatment of solid tumours
,”
Nat. Rev. Cancer
5
,
321
327
(
2005
).
6.
W. W.
Roberts
, “
Focused ultrasound ablation of renal and prostate cancer: Current technology and future directions
,”
Urol. Oncol.: Semin. Orig. Invest.
23
,
367
371
(
2005
).
7.
M. D.
Gillett
,
M. T.
Gettman
,
H.
Zincke
, and
M. L.
Blute
, “
Tissue ablation technologies for localized prostate cancer
,”
Mayo Clinic Proc.
79
,
1547
1555
(
2004
).
8.
R. O.
Illing
,
J. E.
Kennedy
,
F.
Wu
,
G. R.
ter Haar
,
A. S.
Protheroe
,
P. J.
Friend
,
F. V.
Gleeson
,
D. W.
Cranston
,
R. R.
Phillips
, and
M. R.
Middleton
, “
The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population
,”
Br. J. Cancer
93
,
890
895
(
2005
).
9.
C. G.
Chaussy
and
S.
Thuroff
, “
Transrectal high-intensity focused ultrasound for local treatment of prostate cancer. 2009 Update
,”
Urologe
48
,
710
718
(
2009
).
10.
C. H.
Fernandez
,
E. L.
Garcia
,
D. S.
Rios
, and
G. B.
Chomon
, “
Conservative treatment of renal cancer using HIFU. Procedure, indications, and results
,”
Actas Urologicas Esp.
33
,
522
525
(
2009
).
11.
G. J.
Vricella
,
L. E.
Ponsky
, and
J. A.
Cadeddu
, “
Ablative technologies for urologic cancers
,”
Urologic Clinics North Am.
36
,
163
178
(
2009
).
12.
G.
Malietzis
,
L.
Monzon
,
J.
Hand
,
H.
Wasan
,
E.
Leen
,
M.
Abel
,
A.
Muhammad
,
P.
Price
, and
P.
Abel
, “
High-intensity focused ultrasound: Advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology
,”
Br. J. Radiol.
86
,
20130044
(
2013
).
13.
W. H.
She
,
T. T.
Cheung
,
C. R.
Jenkins
, and
M. G.
Irwin
, “
Clinical applications of high-intensity focused ultrasound
,”
Hong Kong Med. J.
22
,
382
392
(
2016
).
14.
Y. H.
Hsiao
,
S. J.
Kuo
,
H. D.
Tsai
,
M. C.
Chou
, and
G. P.
Yeh
, “
Clinical application of high-intensity focused ultrasound in cancer therapy
,”
J. Cancer
7
,
225
231
(
2016
).
15.
R.
Ritchie
,
J.
Collin
,
C.
Coussios
, and
T.
Leslie
, “
Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat
,”
Ultrasound Med. Biol.
39
,
1785
1793
(
2013
).
16.
Z. B.
Liu
,
T. B.
Fan
,
D.
Zhang
, and
X. F.
Gong
, “
Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound
,”
Chin. Phys. B
18
,
4932
4937
(
2009
).
17.
T.
Christopher
, “
Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
44
,
125
139
(
1997
).
18.
J. J.
Macoskey
,
T. L.
Hall
,
J. R.
Sukovich
,
S. W.
Choi
,
K.
Ives
,
E.
Johnsen
,
C. A.
Cain
, and
Z.
Xu
, “
Soft-tissue aberration correction for histotripsy
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
65
,
2073
2085
(
2018
).
19.
L. M.
Hinkelman
,
T. D.
Mast
,
L. A.
Metlay
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part I. Measurements
,”
J. Acoust. Soc. Am.
104
,
3635
3649
(
1998
).
20.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
, and
R. C.
Waag
, “
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations
,”
J. Acoust. Soc. Am.
104
,
3651
3664
(
1998
).
21.
L. M.
Hinkelman
,
D. L.
Liu
,
L. A.
Metlay
, and
R. C.
Waag
, “
Measurements of ultrasonic pulse arrival time and energy-level variations produced by propagation through abdominal-wall
,”
J. Acoust. Soc. Am.
95
,
530
541
(
1994
).
22.
T. D.
Mast
,
L. M.
Hinkelman
,
M. J.
Orr
,
V. W.
Sparrow
, and
R. C.
Waag
, “
Simulation of ultrasonic pulse propagation through the abdominal wall
,”
J. Acoust. Soc. Am.
102
,
1177
1190
(
1997
).
23.
Y.
Sumino
and
R. C.
Waag
, “
Measurements of ultrasonic pulse arrival time differences produced by abdominal-wall specimens
,”
J. Acoust. Soc. Am.
90
,
2924
2930
(
1991
).
24.
G. P. L.
Thomas
,
T. D.
Khokhlova
,
C. R.
Bawiec
,
A. T.
Peek
,
O. A.
Sapozhnikov
,
M.
O'Donnell
, and
V. A.
Khokhlova
, “
Phase-aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
68
,
1040
1050
(
2021
).
25.
E.
Herbert
,
M.
Pernot
,
G.
Montaldo
,
M.
Fink
, and
M.
Tanter
, “
Energy-based adaptive focusing of waves: Application to noninvasive aberration correction of ultrasonic wavefields
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
56
,
2388
2399
(
2009
).
26.
Y.
Hertzberg
,
A.
Volovick
,
Y.
Zur
,
Y.
Medan
,
S.
Vitek
, and
G.
Navon
, “
Ultrasound focusing using magnetic resonance acoustic radiation force imaging: Application to ultrasound transcranial therapy
,”
Med. Phys.
37
,
2934
2942
(
2010
).
27.
M.
Pernot
,
G.
Montaldo
,
M.
Tanter
, and
M.
Fink
, “ ‘
Ultrasonic stars’ for time reversal focusing using induced cavitation bubbles
,”
AIP Conf. Proc.
829
,
223
227
(
2006
).
28.
G. C.
Ng
,
P. D.
Freiburger
,
W. F.
Walker
, and
G. E.
Trahey
, “
A speckle target adaptive imaging technique in the presence of distributed aberrations
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
44
,
140
151
(
1997
).
29.
P. V.
Yuldashev
,
L. M.
Krutyansky
,
V. A.
Khokhlova
,
A. P.
Brysev
, and
F. V.
Bunkin
, “
Distortion of the focused finite amplitude ultrasound beam behind the random phase layer
,”
Acoust. Phys.
56
,
467
474
(
2010
).
30.
Z. B.
Liu
,
X. S.
Guo
,
J.
Tu
, and
D.
Zhang
, “
Variations in temperature distribution and tissue lesion formation induced by tissue inhomogeneity for therapeutic ultrasound
,”
Ultrasound Med. Biol.
40
,
1857
1868
(
2014
).
31.
Z. B.
Liu
,
T. B.
Fan
,
X. S.
Guo
, and
D.
Zhang
, “
Effect of tissue inhomogeneity on nonlinear propagation of focused ultrasound
,”
Chin. Phys. Lett.
27
,
094303
(
2010
).
32.
A. T.
Peek
,
C.
Hunter
,
W.
Kreider
,
T. D.
Khokhlova
,
P. B.
Rosnitskiy
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
, and
V. A.
Khokhlova
, “
Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications
,”
J. Acoust. Soc. Am.
148
,
3569
3580
(
2020
).
33.
M. S.
Canney
,
V. A.
Khokhlova
,
O. V.
Bessonova
,
M. R.
Bailey
, and
L. A.
Crum
, “
Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound
,”
Ultrasound Med. Biol.
36
,
250
267
(
2010
).
34.
T. D.
Khokhlova
,
G. R.
Schade
,
Y. N.
Wang
,
S. V.
Buravkov
,
V. P.
Chernikov
,
J. C.
Simon
,
F.
Starr
,
A. D.
Maxwell
,
M. R.
Bailey
,
W.
Kreider
, and
V. A.
Khokhlova
, “
Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney
,”
Sci. Rep.
9
,
20176
(
2019
).
35.
A.
Kharine
,
S.
Manohar
,
R.
Seeton
,
R. G. M.
Kolkman
,
R. A.
Bolt
,
W.
Steenbergen
, and
F. F. M.
de Mul
, “
Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography
,”
Phys. Med. Biol.
48
,
357
370
(
2003
).
36.
K. J. M.
Surry
,
H. J. B.
Austin
,
A.
Fenster
, and
T. M.
Peters
, “
Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging
,”
Phys. Med. Biol.
49
,
5529
5546
(
2004
).
37.
R.
Amini
,
J. Z.
Kartchner
,
L. A.
Stolz
,
D.
Biffar
,
A. J.
Hamilton
, and
S.
Adhikari
, “
A novel and inexpensive ballistic gel phantom for ultrasound training
,”
World J. Emerg. Med.
6
(3),
225
(
2015
).
38.
B.
Meirza
, “
Development of vessel phantoms for ultrasound methods
,” Masters thesis,
Lund University
,
Lund, Sweden
,
2018
.
39.
M. O.
Culjat
,
D.
Goldenberg
,
P.
Tewari
, and
R. S.
Singh
, “
A review of tissue substitutes for ultrasound imaging
,”
Ultrasound Med. Biol.
36
,
861
873
(
2010
).
40.
C. K.
McGarry
,
L. J.
Grattan
,
A. M.
Ivory
,
F.
Leek
,
G. P.
Liney
,
Y.
Liu
,
P.
Miloro
,
R.
Rai
,
A. P.
Robinson
,
A. J.
Shih
,
B.
Zeqiri
, and
C. H.
Clark
, “
Tissue mimicking materials for imaging and therapy phantoms: A review
,”
Phys. Med. Biol.
65
(
23
),
23TR01
(
2020
).
41.
S. R.
Guntur
and
M. J.
Choi
, “
An improved tissue-mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions with high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
40
(
11
),
2680
2691
(
2014
).
42.
G.
Menikou
and
C.
Damianou
, “
Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures
,”
J. Ther. Ultrasound
5
,
14
(
2017
).
43.
A.
Eranki
,
A. S.
Mikhail
,
A. H.
Negussie
,
P. S.
Katti
,
B. J.
Wood
, and
A.
Partanen
, “
Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications
,”
Int. J. Hyperthermia
36
(
1
),
517
528
(
2019
).
44.
C.
Lafon
,
V.
Zderic
,
M. L.
Noble
,
J. C.
Yuen
,
P. J.
Kaczkowski
,
O. A.
Sapozhnikov
,
F.
Chavrier
,
L. A.
Crum
, and
S.
Vaezy
, “
Gel phantom for use in high-intensity focused ultrasound dosimetry
,”
Ultrasound Med. Biol.
31
(
10
),
1383
1389
(
2005
).
45.
B.
Dunmire
,
J. C.
Kucewicz
,
S. B.
Mitchell
,
L. A.
Crum
, and
K. M.
Sekins
, “
Characterizing an agar/gelatin phantom for image guided dosing and feedback control of high-intensity focused ultrasound
,”
Ultrasound Med. Biol.
39
(
2
),
300
311
(
2013
).
46.
R. L.
King
,
Y.
Liu
,
S.
Maruvada
,
B. A.
Herman
,
K. A.
Wear
, and
G. R.
Harris
, “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
(
7
),
1397
1405
(
2011
).
47.
P.
Blanc-Benon
,
B.
Lipkens
,
L.
Dallois
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation
,”
J. Acoust. Soc. Am.
111
,
487
498
(
2002
).
48.
S.
Taghizadeh
,
C.
Labuda
, and
J.
Mobley
, “
Development of a tissue-mimicking phantom of the brain for ultrasonic studies
,”
Ultrasound Med. Biol.
44
,
2813
2820
(
2018
).
49.
D. F.
Leotta
,
R. E.
Zierler
,
K.
Sansom
,
A.
Aliseda
,
M. D.
Anderson
, and
F. H.
Sheehan
, “
Evaluation of examiner performance using a duplex ultrasound simulator. Flow velocity measurements in dialysis access fistula models
,”
Ultrasound Med. Biol.
44
,
1712
1720
(
2018
).
50.
D. F.
Leotta
and
R. W.
Martin
, “
Three-dimensional ultrasound imaging of the rotator cuff: Spatial compounding and tendon thickness measurement
,”
Ultrasound Med. Biol.
26
,
509
525
(
2000
).
51.
D. F.
Leotta
and
B. W.
Starnes
, “
Custom fenestration templates for endovascular repair of juxtarenal aortic aneurysms
,”
J. Vasc. Surg.
61
,
1637
1641
(
2015
).
52.
M. A.
Ghanem
,
A. D.
Maxwell
,
W.
Kreider
,
B. W.
Cunitz
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
, and
M. R.
Bailey
, “
Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array
,”
IEEE Trans. Ultrason., Ferroelect., Freq. Control
65
,
1618
1630
(
2018
).
53.
P. B.
Rosnitskiy
,
P. V.
Yuldashev
, and
V. A.
Khokhlova
, “
Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus
,”
Acoust. Phys.
61
,
301
307
(
2015
).
54.
G. P.
Thomas
,
T. D.
Khokhlova
,
Y. N.
Wang
,
S.
Totten
,
G. R.
Schade
,
O. A.
Sapozhnikov
, and
V. A.
Khokhlova
, “
In vivo phase aberration correction for high intensity focused ultrasound therapy with a 256-element spiral array
,”
J. Acoust. Soc. Am.
150
(
4
),
A86
(
2021
).
55.
O. V.
Bessonova
,
V. A.
Khokhlova
,
M. S.
Canney
,
M. R.
Bailey
, and
L. A.
Crum
, “
A derating method for therapeutic applications of high intensity focused ultrasound
,”
Acoust. Phys.
56
,
354
363
(
2010
).
56.
F.
Duck
,
Physical Properties of Tissue
(
Academic
,
Cambridge
,
1990
).
57.
T. D.
Khokhlova
,
W. L.
Monsky
,
Y. A.
Haider
,
A. D.
Maxwell
,
Y. N.
Wang
, and
T. J.
Matula
, “
Histotripsy liquefaction of large hematomas
,”
Ultrasound Med. Biol.
42
,
1491
1498
(
2016
).
58.
T.
Koch
,
S.
Lakshmanan
,
S.
Brand
,
M.
Wicke
,
K.
Raum
, and
D.
Morlein
, “
Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: II. Skin and backfat
,”
Meat Sci.
88
,
67
74
(
2011
).
59.
F.
Shahidi
,
Bailey's Industrial Oil and Fat Products. Edible Oil and Fat Products: Chemistry, Properties, and Health Effects
(
Wiley
,
New York
,
2005
).
60.
T.
Koch
,
S.
Lakshmanan
,
S.
Brand
,
M.
Wicke
,
K.
Raum
, and
D.
Morlein
, “
Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle
,”
Meat Sci.
88
,
51
58
(
2011
).
61.
L.
Adamczak
,
M.
Chmiel
,
T.
Florowski
,
D.
Pietrzak
,
M.
Witkowski
, and
T.
Barczak
, “
Using density measurement on semispinalis capitis as a tool to determinate the composition of pork meat
,”
Food Anal. Methods
11
,
1728
1734
(
2018
).
You do not currently have access to this content.