Complexities of acoustic propagation in ducts have long been known, e.g., shallow water environments and deep waters off Gibraltar. The “Beaufort Lens” (Lens) is a duct north of Alaska with nominal depths between 60 and 200 m and is reachable by oceanographic instruments and underwater unmanned vehicles and submarines. Propagation within the ducts is governed by waveguide physics. The frequencies must be high enough to support the modes within them such that there is a “critical frequency” (CF) where modes start to “detach” from surface loss mechanisms. Therefore, transmission losses (TLs) can abruptly decrease once a mode “fits” within a duct. This paper describes an experimental part of Ice Exercise 2018 supported by the U.S. Navy's Arctic Submarine Laboratory. The signals were transmitted from Camp Sargo north of Prudhoe Bay to the submarines SSN Hartford, SSN Connecticut, and HMS Trenchant. The data indicate low TLs near 100 Hz and an abrupt 10 dB decrease in TLs 244–280 Hz, both suggesting CFs. Modeling suggests CFs for modes 1 near 100 Hz and a higher CF when modes 3–6 “cascade” into the Lens starting near 250 Hz. There are also abrupt increases in TLs at other frequencies, which are explained by nulls in the product of the mode functions.

1.
A. G.
Litvak
, “
Acoustics of the deepwater part of the Arctic Ocean and Russia's Arctic shelf
,”
Herald Russ. Acad. Sci.
85
(
3
),
239
250
(
2015
).
2.
A.
Baggeroer
and
W. H.
Munk
, “
The Heard Island feasibility test
,”
Phys. Today
45
(
9
),
22
32
(
1992
).
3.
T. F.
Duda
,
G.
Zhang
, and
Y.-T.
Lin
, “
Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting
,”
J. Acoust. Soc. Am.
149
(
4
),
2117
2136
(
2021
).
4.
M. A.
Spall
,
R. S.
Pickart
,
M.
Li
,
M.
Itoh
,
P.
Lin
,
T.
Kikuchi
, and
Y.
Qi
, “
Transport of Pacific Water into the Canada basin and the formation of Chukchi slope current
,”
J. Geophys. Res.: Oceans
123
(
10
),
7453
7471
, https://doi.org/10.1029/2018JC013825 (
2018
).
5.
J.
Toole
,
R.
Krishfield
,
A.
Proshutinsky
,
C.
Ashjian
,
K.
Doherty
,
D.
Frye
,
T.
Hammar
,
J.
Kemp
,
D.
Peters
,
M.-L.
Timmermans
,
K.
von der Heydt
,
G.
Packard
, and
T.
Shanahan
, “
Ice-tethered profilers sample the upper Arctic Ocean
,”
EOS, Trans., Am. Geophys. Union
87
(
41
),
434
438
, https://doi.org/10.1029/2006EO410003 (
2006
).
6.
R.
Weller
and
G.
Jacobs
(private communication,
2021
).
7.
L.
Freitag
(private communication,
2014
).
8.
G.
Hope
,
H.
Sagan
,
E.
Storheim
,
H.
Hobaek
, and
L.
Freitag
, “
Measured and modeled acoustic propagation underneath the rough Arctic sea-ice
,”
J. Acoust. Soc. Am.
142
(
3
),
1619
1633
(
2017
).
9.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Computational Ocean Acoustics
,” in
Modern Acoustics and Signal Processing
(
Springer
,
New York
,
2011
), Eq. (5.14).
10.
P. N.
Mikhalevsky
,
Encyclopedia of Ocean Science
(
Academic
,
New York
,
2001
), pp.
53
61
.
11.
J. L.
Newton
, “
Sound speed structure of the Arctic Ocean including some effects on acoustic propagation
,”
U.S. Navy J. Underwater Acoust.
39
(
4
),
363
381
(
1989
).
12.
A.
Baggeroer
and
H.
Schmidt
, “Proposed experiments for ICEX-16,” presentation to VADM Connor, COMSUBFOR (August 18,
2015
).
13.
R.
Evans
and
M.
Porter
(private communication,
2014
).
14.
K.
Lepage
and
H.
Schmidt
, “
Modeling of low frequency transmission loss in the central Arctic
,”
J. Acoust. Soc. Am.
96
(
3
),
1783
1798
(
1994
).
15.
“USS Sargo (SSN-583),” available at https://en.wikipedia.org/wiki/USSSargo(SSN–583) (Last viewed April 13, 2022).
16.
T. G.
Birdsall
,
K.
Metzger
, and
D.
Dzieciuch
, “
Signals, signal processing and general results
,”
J. Acoust. Soc. Am.
96
(
4
),
2343
2353
(
1994
).
17.
S. M.
Flatte
, “
Angle depth diagram for use in underwater acoustics
,”
J. Acoust. Soc. Am.
60
(
5
),
1020
1023
(
1976
).
18.
M.
Kucukosmanoglu
,
J. A.
Colosi
,
P. F.
Worceester
,
M. A.
Dzieciuch
, and
D. J.
Torres
, “
Observations of sound-speed fluctuations in the Beaufort Sea from summer 2016 to summer 2017
,”
J. Acoust. Soc. Am.
149
(
3
),
1536
1548
(
2021
).
19.
H.
Schmidt
and
F. B.
Jensen
, “
A full wave solution for propagation in multilayered, viscoelastic media with application to Gaussian beam reflection at fluid–solid interfaces
,”
J. Acoust. Soc. Am.
77
(
3
),
813
–825 (
1985
).
20.
J. D.
Pryce
,
Numerical Solution of Sturm-Liouville Problems
1st ed. (
Oxford University Press
,
Oxford
,
1994
).
You do not currently have access to this content.