Core–shell nanostructures are widely used, and their photoacoustic (PA) properties are important for applications. However, the relations between their structural parameters and the properties of the PA spectrum are indirect because most theoretical models have been reported for them in the time domain. In this study, we develop a complete model in the frequency domain to analyze the PA response of core–shell particles. As in the case of solid spheres, the core-shell particles have pronounced resonant modes. The PA mode varies with the thickness of the shell and the radius of the core. Under single-pulse irradiation, PA signals of gold–silica nanospheres obtained by our theory agreed with those of the theory in the time domain and experiments. Under multi-pulse irradiation, the magnitude of the PA signals peaked whether the repeated excitation itself or its harmonic was equal to the PA mode. The structure could thus be monitored by the PA signals. These findings enrich PA theory and may inspire new techniques for the noninvasive characterization of nanoparticles.

1.
G.
Chen
,
I.
Roy
,
C.
Yang
, and
P. N.
Prasad
, “
Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy
,”
Chem. Rev.
116
,
2826
2885
(
2016
).
2.
Z.
Chen
,
P.
Zhao
,
Z.
Luo
,
M.
Zheng
,
H.
Tian
,
P.
Gong
,
G.
Gao
,
H.
Pan
,
L.
Liu
,
A.
Ma
,
H.
Cui
,
Y.
Ma
, and
L.
Cai
, “
Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy
,”
ACS Nano
10
,
10049
10057
(
2016
).
3.
Q.
Fu
,
R.
Zhu
,
J.
Song
,
H.
Yang
, and
X.
Chen
, “
Photoacoustic imaging: Contrast agents and their biomedical applications
,”
Adv. Mater.
31
,
1805875
(
2019
).
4.
H.
Jie
,
Q. X.
Zhou
,
X. M.
Ren
,
Z.
Xu
, and
X. J.
Liu
, “
Acoustic manipulation on microbubbles along arbitrary trajectories and adjustable destination
,”
Appl. Phys. Lett.
119
,
093503
(
2021
).
5.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B.
107
,
668
677
(
2003
).
6.
J. F.
Li
,
Y. J.
Zhang
,
S. Y.
Ding
,
R.
Panneerselvam
, and
Z. Q.
Tian
, “
Core−shell nanoparticle-enhanced raman spectroscopy
,”
Chem. Rev.
117
,
5002
5069
(
2017
).
7.
Z. H.
Zhou
,
J.
Zhao
,
Z. H.
Di
,
B.
Liu
,
Z. H.
Li
,
X. M.
Wu
, and
L. L.
Li
, “
Core-shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy
,”
Nanoscale
13
,
131
137
(
2021
).
8.
K.
Shahbazi
,
W.
Frey
,
Y. S.
Chen
,
S.
Aglyamov
, and
S.
Emelianov
, “
Photoacoustics of core–shell nanospheres using comprehensive modeling and analytical solution approach
,”
Commun. Phys.
2
,
119
(
2019
).
9.
G. A.
Pang
,
F.
Poisson
,
J.
Laufer
,
C.
Haisch
, and
E.
Bossy
, “
Theoretical and experimental study of photoacoustic excitation of silica-coated gold nanospheres in water
,”
J. Phys. Chem. C
124
,
1088
1098
(
2020
).
10.
Y. S.
Chen
,
W.
Frey
,
S.
Aglyamov
, and
P. S.
Emelianov
, “
Environment-dependent generation of photoacoustic waves from plasmonic nanoparticles
,”
Small
8
,
47
52
(
2012
).
11.
A.
Crut
,
P.
Maioli
,
N. D.
Fatti
, and
F.
Vallée
, “
Time-domain investigation of the acoustic vibrations of metal nanoparticles: Size and encapsulation effects
,”
Ultrasonics
56
,
98
108
(
2015
).
12.
S.
Alikhani
,
M. A.
Ansari
, and
A. R.
Niknam
, “
Simulation of thermoacoustic resonance response of tumor by finite element method
,”
J. Appl. Phys.
126
,
174701
(
2019
).
13.
X. X.
Gao
,
C.
Tao
,
X. J.
Liu
, and
X. D.
Wang
, “
Photoacoustic eigen-spectrum from light-absorbing microspheres and its application in noncontact elasticity evaluation
,”
Appl. Phys. Lett.
110
,
054101
(
2017
).
14.
E.
Hysi
,
M. N.
Fadhel
,
M. J.
Moore
,
J.
Zalev
,
E. M.
Strohm
, and
M. C.
Kolios
, “
Insights into photoacoustic speckle and applications in tumor characterization
,”
Photoacoustics
14
,
37
48
(
2019
).
15.
R.
Fuentes-Dominguez
,
S.
Naznin
,
L.
Marques
,
F.
Pérez-Cota
,
R. J.
Smith
, and
M.
Clark
, “
Characterising the size and shape of metallic nano-structures by their acoustic vibrations
,”
Nanoscale
12
,
14230
14236
(
2020
).
16.
Y. C.
Tian
,
H.
Tian
,
Y. L.
Wu
,
L. L.
Zhu
,
L. Q.
Tao
,
W.
Zhang
,
Y.
Shu
,
D.
Xie
,
Y.
Yang
,
Z. Y.
Wei
,
X. H.
Lu
,
T. L.
Ren
,
C. K.
Shih
, and
J. M.
Zhao
, “
Coherent generation of photo-thermo-acoustic wave from graphene sheets
,”
Sci. Rep.
5
,
10582
(
2015
).
17.
D.
Vangi
,
L.
Banelli
, and
M. S.
Gulino
, “
Interference-based amplification for CW laser-induced photoacoustic signals
,”
Ultrasonics
110
,
106270
(
2021
).
18.
A.
Demirkiran
,
A.
Karakuzu
,
H.
Erkol
,
H.
Torun
, and
M. B.
Unlu
, “
Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves
,”
Opt. Express
26
,
4906
4919
(
2018
).
19.
H.
Kim
,
H.
Lee
,
H.
Moon
,
J.
Kang
,
Y.
Jang
,
D.
Kim
,
J.
Kim
,
E.
Huynh
,
G.
Zheng
,
H.
Kim
, and
J. H.
Chang
, “
Resonance-based frequency-selective amplification for increased photoacoustic imaging sensitivity
,”
ACS Photonics
6
,
2268
2276
(
2019
).
20.
H. H.
Cheng
,
W. L.
Wang
,
Y.
Zhou
,
T.
Qiao
,
W.
Lin
,
S. H.
Xu
, and
Z. M.
Yang
, “
5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser
,”
Opt. Express
25
,
27646
27651
(
2017
).
21.
J. R.
Qin
,
R. H.
Dai
,
Y.
Li
,
Y. F.
Meng
,
Y. B.
Zhu
,
S. N.
Xu
, and
F. Q.
Wang
, “
20 GHz actively mode-locked thulium fiber laser
,”
Opt. Express
26
,
25769
25777
(
2018
).
22.
A.
Rosencwaig
and
A.
Gersho
, “
Theory of the photoacoustic effect with solids
,”
J. Appl. Phys.
47
,
64
69
(
1976
).
23.
M. I.
Tribelsky
,
A. E.
Miroshnichenko
,
Y. S.
Kivshar
,
B. S.
Luk'yanchuk
, and
A. R.
Khokhlov
, “
Laser pulse heating of spherical metal particles
,”
Phys. Rev. X
1
,
021024
(
2011
).
24.
V. E.
Gusev
and
A. A.
Karabutov
,
Laser Optoacoustics
(
AIP
,
New York
,
1993
).
25.
G. J.
Diebold
,
M. I.
Khan
, and
S. M.
Park
, “
Photoacoustic ‘signatures’ of particulate matter: Optical production of acoustic monopole radiation
,”
Science
250
,
101
104
(
1990
).
26.
S.
Merabia
,
S.
Shenogin
,
L.
Joly
,
P.
Keblinski
, and
J. L.
Barrat
, “
Heat transfer from nanoparticles: A corresponding state analysis
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
15113
15118
(
2009
).
27.
D.
Mongin
,
V.
Juvé
,
P.
Maioli
,
A.
Crut
,
N.
Del Fatti
,
F.
Vallée
,
A.
Sánchez-Iglesias
,
I.
Pastoriza-Santos
, and
L. M.
Liz-Marzán
, “
Acoustic vibrations of metal-dielectric core-shell nanoparticles
,”
Nano Lett.
11
,
3016
3021
(
2011
).
28.
Y. S.
Chen
,
W.
Frey
,
S.
Kim
,
P.
Kruizinga
,
K.
Homan
, and
S.
Emelianov
, “
Silica-coated gold nanorods as photoacoustic signal nanoamplifiers
,”
Nano Lett.
11
,
348
354
(
2011
).
29.
H. Q.
Yu
,
J.
Yao
,
X. W.
Wu
,
D. J.
Wu
, and
X. J.
Liu
, “
Tunable photoacoustic properties of gold nanoshells with near-infrared optical responses
,”
J. Appl. Phys.
122
,
134901
(
2017
).
30.
J. D.
Macias
,
J.
Ordonez-Miranda
, and
J. J.
Alvarado-Gil
, “
Resonance frequencies and Young's modulus determination of magnetorheological elastomers using the photoacoustic technique
,”
J. Appl. Phys.
112
,
124910
(
2012
).
You do not currently have access to this content.