The seabed data from the Kara Sea (a part of the Arctic Shelf) are used to build a low-frequency (up to 250 Hz) acoustic waveguide model and study sound propagation in this region. A 30-m deep, well-mixed, and homogenous water layer over a flat seafloor is considered. The seabed's acoustic model is based on the spatial distribution of a sound speed recorded during a three-dimensional seismic survey in the Kara Sea, as well as density data from core sample analysis. One of the region's most distinctive features is the presence of large areas (up to several tens of square kilometers) where the bottom sound speed is close to that in water. In such a setting, the normal mode approach is applied to the sound propagation problem. The overall acoustic field is made up of propagating and leaky modes, which include quasi-modes. Numerical simulations show a high spatial variability of attenuation in the waveguide, 1.5 to 20 dB/km at 137 Hz. Even if the water depth is constant and the seafloor is uniform and smooth, mode coupling and horizontal refraction can occur owing to the bottom inhomogeneities. For higher modes, the predicted angle of refraction is up to 10°.

1.
M.
Badiey
,
L.
Wan
,
S.
Pecknold
, and
A.
Turgut
, “
Azimuthal and temporal sound fluctuations on the Chukchi continental shelf during the Canada Basin Acoustic Propagation Experiment 2017
,”
J. Acoust. Soc. Am.
146
(
6
),
EL530
EL536
(
2019
).
2.
M. S.
Ballard
,
M.
Badiey
,
J. D.
Sagers
,
J. A.
Colosi
,
A.
Turgut
,
S.
Pecknold
,
Y.-T.
Lin
,
A.
Proshutinsky
,
R.
Krishfield
,
P. F.
Worcester
, and
M. A.
Dzieciuch
, “
Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf
,”
J. Acoust. Soc. Am.
148
(
3
),
1663
1680
(
2020
).
3.
J. E.
Quijano
,
D. E.
Hannay
, and
M. E.
Austin
, “
Composite underwater noise footprint of a shallow Arctic exploration drilling project
,”
IEEE J. Oceanic Eng.
44
(
4
),
1228
1239
(
2019
).
4.
R. W.
Macdonald
,
Z. Z. A.
Kuzyk
, and
S. C.
Johannessen
, “
The vulnerability of Arctic shelf sediments to climate change
,”
Environ. Rev.
23
(
4
),
461
479
(
2015
).
5.
B.
Katsnelson
,
V.
Petnikov
, and
J.
Lynch
,
Fundamentals of Shallow Water Acoustics
(
Springer
,
New York
,
2012
).
6.
E. L.
Hamilton
, “
Geoacoustic models of the sea floor
,” in
Physics of Sound in Marine Sediments
, edited by
L.
Hampton
(
Plenum Press
,
New York
,
1974
), pp.
181
221
.
7.
A. I.
Belov
and
G. N.
Kuznetsov
, “
Noisiness estimation of moving objects by identification of an acoustic model of the sea bottom
,”
Acoust. Phys.
59
(
6
),
674
693
(
2013
).
8.
A. N.
Rutenko
and
V. G.
Ushchipovskii
, “
Estimates of acoustic noise generated by supply vessels working with oil-drilling platforms
,”
Acoust. Phys.
61
(
5
),
556
565
(
2015
).
9.
V. A.
Grigoriev
,
V. G.
Petnikov
, and
A. V.
Shatravin
, “
Sound field in a shallow-water arctic-type waveguide with a bottom containing a gas-saturated sediment layer
,”
Acoust. Phys.
63
(
4
),
433
448
(
2017
).
10.
K.
Ohta
and
G. V.
Frisk
, “
Modal evolution and inversion for seabed geoacoustic properties in weakly range-dependent shallow-water waveguides
,”
IEEE J. Oceanic Eng.
22
(
3
),
501
521
(
1997
).
11.
M. S.
Ballard
,
K. M.
Becker
, and
J. A.
Goff
, “
Geoacoustic inversion for the New Jersey shelf: 3-D sediment model
,”
IEEE J. Oceanic Eng.
35
(
1
),
28
42
(
2010
).
12.
N. N.
Dmitrevskii
,
R. A.
Anan'ev
,
A. A.
Meluzov
,
A. D.
Mutovkin
, and
A. G.
Roslyakov
, “
Geological-acoustic studies in the Laptev Sea during the voyage of the Vladimir Buinitskii
,”
Oceanology
54
(
1
),
116
119
, (
2014
).
13.
T. N.
Bishop
,
K. P.
Bube
,
R. T.
Cutler
,
R. T.
Langan
,
P. L.
Love
,
J. R.
Resnick
,
R. T.
Shuey
,
D. A.
Spindler
, and
H. W.
Wyld
, “
Tomographic determination of velocity and depth in laterally varying media
,”
Geophysics
50
(
6
),
903
923
(
1985
).
14.
D. P.
Knobles
,
J. A.
Goff
,
R. A.
Koch
,
P. S.
Wilson
, and
J. A.
Shooter
, “
Effect of inhomogeneous sub-bottom layering on broadband acoustic propagation
,”
IEEE J. Oceanic Eng.
35
(
4
),
732
743
(
2010
).
15.
M. S.
Ballard
,
Y. T.
Lin
, and
J. F.
Lynch
, “
Horizontal refraction of propagating sound due to seafloor scours over a range-dependent layered bottom on the New Jersey shelf
,”
J. Acoust. Soc. Am.
131
(
4
),
2587
2598
(
2012
).
16.
J.-X.
Zhou
,
X.-Z.
Zhang
, and
D. P.
Knobles
, “
Low-frequency geoacoustic model for the effective properties of sandy seabottoms
,”
J. Acoust. Soc. Am.
125
(
5
),
2847
2866
(
2009
).
17.
V. A.
Grigor'ev
,
V. G.
Petnikov
,
A. G.
Roslyakov
, and
Y. E.
Terekhina
, “
Sound propagation in shallow water with an inhomogeneous gas-saturated bottom
,”
Acoust. Phys.
64
(
3
),
331
346
(
2018
).
18.
V. A.
Grigor'ev
,
A. A.
Lunkov
, and
V. G.
Petnikov
, “
Effect of sound-speed inhomogeneities in sea bottom on the acoustic wave propagation in shallow water
,”
Phys. Wave Phenom.
28
(
3
),
255
266
(
2020
).
19.
A.
Lunkov
,
V.
Petnikov
, and
D.
Sidorov
, “
Horizontal refraction of acoustic waves in shallow-water waveguides due to an inhomogeneous bottom structure
,”
J. Mar. Sci. Eng.
9
(
11
),
1269
(
2021
).
20.
L.
Brekhovskikh
,
Waves in Layered Media
(
Elsevier
,
Amsterdam
,
2012
).
21.
V. A.
Grigor'ev
and
V. G.
Petnikov
, “
On the possibility of representing an acoustic field in shallow water as the sum of normal modes and quasimodes
,”
Acoust. Phys.
62
(
6
),
700
716
(
2016
).
22.
M. D.
Collins
, “
The adiabatic mode parabolic equation
,”
J. Acoust. Soc. Am.
94
(
4
),
2269
2278
(
1993
).
23.
A. A.
Lunkov
and
V. G.
Petnikov
, “
Effect of random hydrodynamic inhomogeneities on low frequency sound propagation loss in shallow water
,”
Acoust. Phys.
56
(
3
),
328
335
(
2010
).
24.
F. V.
Bunkin
,
B. G.
Katsnelson
,
Y.
Kravtsov
,
L. S.
Kulapin
,
V. G.
Petnikov
,
E. A.
Rivelis
,
V. M.
Reznikov
,
O. I.
Sabirov
, and
A. V.
Sidenko
, “
Average estimates of sound-absorption in shallow ocean waveguides
,”
Sov. Phys. Acoust.-USSR
35
(
1
),
1
4
(
1989
).
25.
G.
Hope
,
H.
Sagen
,
E.
Storheim
,
H.
Hobæk
, and
L.
Freitag
, “
Measured and modeled acoustic propagation underneath the rough Arctic sea-ice
,”
J. Acoust. Soc. Am.
142
(
3
),
1619
1633
(
2017
).
26.
M. V.
Volkov
,
V. A.
Grigor'ev
,
I. V.
Zhilin
,
A. A.
Lunkov
,
V. G.
Petnikov
, and
A. V.
Shatravin
, “
An Arctic-type shallow-water acoustic waveguide as an information transmission channel for underwater communications
,”
Acoust. Phys.
64
(
6
),
692
697
(
2018
).
27.
C. H.
Dix
, “
Seismic velocities from surface measurements
,”
Geophysics
20
(
1
),
68
86
(
1955
).
28.
W. A.
Kuperman
and
F. B.
Jensen
,
Bottom-Interacting Ocean Acoustics
(
Plenum Press
,
New York
,
1980
).
29.
T.
Akal
, “
The relationship between the physical properties of underwater sediments that affect bottom reflection
,”
Mar. Geol.
13
(
4
),
251
266
(
1972
).
30.
A. W.
Wood
,
A Textbook of Sound
(
McMillan
,
New York
,
1955
).
31.
B.
Katsnelson
,
A.
Lunkov
,
R.
Katsman
, and
I.
Ostrovsky
, “
Acoustical methodology for determination of gas content in aquatic sediments, with application to Lake Kinneret, Israel, as a case study
,”
Limnol. Oceanogr. Methods
15
(
6
),
531
541
(
2017
).
32.
J. A.
DeSanto
,
Ocean Acoustics
(
Springer-Verlag
,
Berlin
,
1979
).
33.
V. A.
Grigor'ev
,
A. A.
Lunkov
, and
V. G.
Petnikov
, “
Attenuation of sound in shallow-water areas with gas-saturated bottoms
,”
Acoust. Phys.
61
(
1
),
85
95
(
2015
).
34.
L. M.
Brekhovskikh
and
O.
Godin
,
Acoustics of Layered Media II
(
Springer-Verlag
,
Berlin-Heidelberg
,
1999
).
35.
J. C.
Preisig
and
T. F.
Duda
, “
Coupled acoustic mode propagation through continental-shelf internal solitary waves
,”
IEEE J. Oceanic Eng.
22
(
2
),
256
269
(
1997
).
36.
M.
Collins
, “
Generalization of the split-step Pade solution
,”
J. Acoust. Soc. Am.
96
(
1
),
382
385
(
1994
).
You do not currently have access to this content.