The theory for nonlinear surface acoustic waves in crystals developed using Hamiltonian mechanics [Hamilton, Il'inskii, and Zabolotskaya, J. Acoust. Soc. Am. 105, 639 (1999)] is modified to account for piezoelectric material properties. The derived spectral evolution equations permit analysis of nonlinear surface wave propagation along a cut surface of any orientation with respect to the crystallographic axes and for piezoelectric crystals with any symmetry. Numerical simulations of waveform distortion in the particle velocity and electric field components are presented for surface wave propagation in Y-cut lithium niobate along the X- and Z-crystallographic axes. The influence of piezoelectricity is illustrated by comparing the nonlinear evolution of waveforms along a surface bounded by a vacuum (free space) and an ideal conductor (short circuit). Contributions to the nonlinearity from elasticity, piezoelectricity, electrostriction, and dielectricity are quantified separately for the two boundary conditions.

1.
E. G.
Lean
and
C. C.
Tseng
, “
Nonlinear effects in surface acoustic waves
,”
J. Appl. Phys.
41
,
3912
3917
(
1970
).
2.
A. J.
Slobodnik
, Jr.
, “
Nonlinear effects in microwave acoustic LiNbO3 surface-wave delay lines
,”
J. Acoust. Soc. Am.
48
,
203
210
(
1970
).
3.
D. P.
Morgan
, “
Surface acoustic wave devices and applications: 5. Signal processing using programmable non-linear convolvers
,”
Ultrasonics
12
,
74
83
(
1974
).
4.
D. P.
Morgan
,
Surface-Wave Devices for Signal Processing
(
Elsevier
,
New York
,
1985
), Secs. 10.3 and 10.4.
5.
H. F.
Tiersten
and
J. C.
Baumhauer
, “
An analysis of second harmonic generation of surface waves in piezoelectric solids
,”
J. Appl. Phys.
58
,
1867
1875
(
1985
).
6.
G. E.
Tupholme
and
A. P.
Harvey
, “
Nonlinear surface acoustic waves on a piezoelectric solid
,”
Int. J. Eng. Sci.
26
,
1161
1168
(
1988
).
7.
R. W.
Lardner
, “
Nonlinear surface acoustic waves on an elastic solid of general anisotropy
,”
J. Elast.
16
,
63
73
(
1986
).
8.
D. F.
Parker
and
E. A.
David
, “
Nonlinear piezoelectric surface waves
,”
Int. J. Eng. Sci.
27
,
565
581
(
1989
).
9.
D. F.
Parker
, “
Waveform evolution for nonlinear surface acoustic waves
,”
Int. J. Eng. Sci.
26
,
59
75
(
1988
).
10.
R. E.
Kumon
, “
Nonlinear surface acoustic waves in cubic crystals
,” Ph.D. dissertation,
The University of Texas at Austin
,
1999
; see the annotated bibliography on pp.
16
20
.
11.
A. L.
Fetter
and
J. D.
Walecka
,
Theoretical Mechanics of Particles and Continua
(
McGraw-Hill
,
New York
,
1980
), Chap. 6.
12.
V. P.
Reutov
, “
Use of the averaged variational principle for describing multiwave interactions of elastic surface waves
,”
Radiophys. Quant. Electron.
16
,
1307
1316
(
1973
).
13.
E. A.
Zabolotskaya
, “
Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids
,”
J. Acoust. Soc. Am.
91
,
2569
2575
(
1992
).
14.
G. D.
Meegan
,
M. F.
Hamilton
,
Yu. A.
Il'inskii
, and
E. A.
Zabolotskaya
, “
Nonlinear Stoneley and Scholte waves
,”
J. Acoust. Soc. Am.
106
,
1712
1723
(
1999
).
15.
M. F.
Hamilton
,
Yu. A.
Il'inskii
, and
E. A.
Zabolotskaya
, “
Nonlinear surface acoustic waves in crystals
,”
J. Acoust. Soc. Am.
105
,
639
651
(
1999
).
16.
M. F.
Hamilton
,
Yu. A.
Il'inskii
, and
E. A.
Zabolotskaya
, “
Nonlinear surface acoustic waves
,”
AIP Conf. Proc.
524
,
55
64
(
2000
).
17.
E. Yu.
Knight
,
M. F.
Hamilton
,
Yu. A.
Il'inskii
, and
E. A.
Zabolotskaya
, “
General theory for the spectral evolution of nonlinear Rayleigh waves
,”
J. Acoust. Soc. Am.
102
,
1402
1417
(
1997
).
18.
A. P.
Mayer
, “
Surface acoustic waves in nonlinear elastic media
,”
Phys. Rep.
256
,
237
366
(
1995
).
19.
B. A.
Auld
,
Acoustic Fields and Waves in Solids,
2nd ed. (
Krieger
,
Malabar, FL
,
1990
), Vol. 1, pp.
275
278
.
20.
Y.
Nakagawa
,
K.
Yamanouchi
, and
K.
Shibayama
, “
Third-order elastic constants of lithium niobate
,”
J. Appl. Phys.
44
,
3969
3974
(
1973
).
21.
L. D.
Landau
,
E. M.
Lifshitz
, and
L. P.
Pitaevskii
,
Electrodynamics of Continuous Media
, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1984
), Sec. 10.
22.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1986
), p.
106
.
23.
D. B.
Taylor
and
S.
Crampin
, “
Surface waves in anisotropic media: propagation in a homogeneous piezoelectric halfspace
,”
Proc. R. Soc. London, Ser. A
364
,
161
179
(
1978
).
24.
A. W.
Warner
,
M.
Onoe
, and
G. A.
Coquin
, “
Determination of elastic and piezoelectric constants for crystals in class (3m)
,”
J. Acoust. Soc. Am.
42
,
1223
1231
(
1967
).
25.
W. R.
Cook
and
H.
Jaffe
, “
Piezoelectric, electrostrictive and dielectric constants, and electromechanical coupling factors of piezoelectric crystals
,” in
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology
, edited by
K.-H.
Hellwege
and
A. M.
Hellwege
(
Springer
,
New York
,
1979
), Group III, Vol.
11
, pp.
287
294
.
26.
D. F.
Nelson
,
Electric, Optic, and Acoustic Interactions in Dielectrics
(
Wiley
,
New York
,
1979
), Sec. 17.6.
27.
G. A.
Maugin
,
Nonlinear Electromechanical Effects and Applications
(
World Scientific
,
Singapore
,
1985
), p.
19
.
28.
F.
Takali
,
S.
Msedi
,
C.
Othmani
,
A.
Njeh
,
W.
Donner
, and
M. H.
Ben Ghozlen
, “
Acousto-elastic theory for the coupling parameters in terms of nonlinear elastic, piezoelectric, electrostrictive, and dielectric constants in trigonal and hexagonal crystalline systems: applied in the crystal and solid-state physics
,”
Acta Mech.
230
,
1027
1035
(
2019
).
29.
G. W.
Farnell
, “
Properties of elastic surface waves
,” in
Physical Acoustics
, edited by
W. P.
Mason
and
R. N.
Thurston
(
Academic
,
New York
,
1970
), Vol.
VI
, pp.
109
166
.
30.
R. E.
Kumon
and
M. F.
Hamilton
, “
Nonlinear coupling of surface and quasitransverse bulk modes in cubic crystals
,”
J. Acoust. Soc. Am.
113
,
3060
3064
(
2003
).
31.
N. N.
Bogoliubov
and
Y. A.
Mitropolsky
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
(
Hindustan
,
Delhi
,
1961
), Sec. 24.
32.
Y.
Cho
and
K.
Yamanouchi
, “
Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate
,”
J. Appl. Phys.
61
,
875
887
(
1987
).
33.
R. E.
Kumon
and
M. F.
Hamilton
, “
Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals
,”
J. Acoust. Soc. Am.
111
,
2060
2069
(
2002
).
34.
E. Yu.
Knight
,
M. F.
Hamilton
,
Yu. A.
Ilinskii
, and
E. A.
Zabolotskaya
, “
On Rayleigh wave nonlinearity, and analytical approximation of the shock formation distance
,”
J. Acoust. Soc. Am.
102
,
2529
2535
(
1997
).
35.
J. J.
Campbell
and
W. R.
Jones
, “
A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves
,”
IEEE Trans. Sonics Ultrason.
15
,
209
217
(
1968
).
36.
P.
Delsing
,
A. N.
Cleland
,
M. J. A.
Schuetz
,
J.
Knörzer
,
G.
Giedke
,
J. I.
Cirac
,
K.
Srinivasan
,
M.
Wu
,
K. C.
Balram
,
C.
Bäuerle
,
T.
Meunier
,
C. J. B.
Ford
,
P. V.
Santos
,
E.
Cerda-Méndez
,
H.
Wang
,
H. J.
Krenner
,
E. D. S.
Nysten
,
M.
Weiß
,
G. R.
Nash
,
L.
Thevenard
,
C.
Gourdon
,
P.
Rovillain
,
M.
Marangolo
,
J.-Y.
Duquesne
,
G.
Fischerauer
,
W.
Ruile
,
A.
Reiner
,
B.
Paschke
,
D.
Denysenko
,
D.
Volkmer
,
A.
Wixforth
,
H.
Bruus
,
M.
Wiklund
,
J.
Reboud
,
J. M.
Cooper
,
Y. Q.
Fu
,
M. S.
Brugger
,
F.
Rehfeldt
, and
C.
Westerhausen
, “
The 2019 surface acoustic waves roadmap
,”
J. Phys. D: Appl. Phys.
52
,
353001
(
2019
).
37.
L.
Hackett
,
M.
Miller
,
F.
Brimigion
,
D.
Dominguez
,
G.
Peake
,
A.
Tauke-Pedretti
,
S.
Arterburn
,
T. A.
Friedmann
, and
M.
Eichenfield
, “
Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions
,”
Nat. Commun.
12
,
2769
(
2021
).
38.
E. L.
Adler
, “
SAW and pseudo-SAW properties using matrix methods
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
41
,
876
882
(
1994
).
39.
R. C.
Peach
, “
A general Green function analysis for SAW devices
,”
IEEE Ultrasonics Symp. Proc.
1
,
221
225
(
1995
).
You do not currently have access to this content.