Focused ultrasound treatments of the spinal cord may be facilitated using a phased array transducer and beamforming to correct spine-induced focal aberrations. Simulations can non-invasively calculate aberration corrections using x-ray computed tomography (CT) data that are correlated to density (ρ) and longitudinal sound speed (cL). We aimed to optimize vertebral lamina-specific cL(ρ) functions at a physiological temperature (37 °C) to maximize time domain simulation accuracy. Odd-numbered ex vivo human thoracic vertebrae were imaged with a clinical CT-scanner (0.511 × 0.511 × 0.5 mm), then sonicated with a transducer (514 kHz) focused on the canal via the vertebral lamina. Vertebra-induced signal time shifts were extracted from pressure waveforms recorded within the canals. Measurements were repeated 5× per vertebra, with 2.5 mm vertical vertebra shifts between measurements. Linear functions relating cL with CT-derived density were optimized. The optimized function was cL(ρ)=0.35(ρρw)+cL,w m/s, where w denotes water, giving the tested laminae a mean bulk density of 1600 ± 30 kg/m3 and a mean bulk cL of 1670 ± 60 m/s. The optimized lamina cL(ρ) function was accurate to λ/16 when implemented in a multi-layered ray acoustics model. This modelling accuracy will improve trans-spine ultrasound beamforming.

1.
D.
Weber-Adrian
,
E.
Thévenot
,
M. A.
O'Reilly
,
W.
Oakden
,
M. K.
Akens
,
N.
Ellens
,
K.
Markham-Coultes
,
A.
Burgess
,
J.
Finkelstein
,
A. J.
Yee
, C. M. Whyne, K. D. Foust, B. K. Kaspar, G. J. Stanisz, R. Chopra, K. Hynynen and I. Aubert, “
Gene delivery to the spinal cord using MRI-guided focused ultrasound
,”
Gene Therapy
22
(
7
),
568
577
(
2015
).
2.
A. H.
Payne
,
G. W.
Hawryluk
,
Y.
Anzai
,
H.
Odéen
,
M. A.
Ostlie
,
E. C.
Reichert
,
A. J.
Stump
,
S.
Minoshima
, and
D. J.
Cross
, “
Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability
,”
Neural Regen. Res.
12
(
12
),
2045
2049
(
2017
).
3.
M. A.
O'Reilly
,
T.
Chinnery
,
M.-L.
Yee
,
S.-K.
Wu
,
K.
Hynynen
,
R. S.
Kerbel
,
G. J.
Czarnota
,
K. I.
Pritchard
, and
A.
Sahgal
, “
Preliminary investigation of focused ultrasound-facilitated drug delivery for the treatment of leptomeningeal metastases
,”
Sci. Rep.
8
(
1
),
1
8
(
2018
).
4.
S.-M. P.
Fletcher
,
N.
Ogrodnik
, and
M. A.
O'Reilly
, “
Enhanced detection of bubble emissions through the intact spine for monitoring ultrasound-mediated blood-spinal cord barrier opening
,”
IEEE Trans. Biomed. Eng.
67
,
1387
1396
(
2020
).
5.
S.-M. P.
Fletcher
,
M.
Choi
,
R.
Ramesh
, and
M.
O'Reilly
, “
Effect of sonication parameters on the efficacy of focused ultrasound and microbubble-mediated blood-spinal cord barrier opening using short-burst, phase keying exposures
,”
J. Acoust. Soc. Am.
148
(
4
),
2799
(
2020
).
6.
P.
Smith
,
N.
Ogrodnik
,
J.
Satkunarajah
, and
M. A.
O'Reilly
, “
Characterization of ultrasound-mediated delivery of trastuzumab to normal and pathologic spinal cord tissue
,”
Sci. Rep.
11
(
1
),
1
12
(
2021
).
7.
S.-M. P.
Fletcher
,
M.
Choi
,
N.
Ogrodnik
, and
M. A.
O'Reilly
, “
A porcine model of transvertebral ultrasound and microbubble-mediated blood-spinal cord barrier opening
,”
Theranostics
10
(
17
),
7758
7774
(
2020
).
8.
R.
Xu
and
M. A.
O'Reilly
, “
Simulating transvertebral ultrasound propagation with a multi-layered ray acoustics model
,”
Phys. Med. Biol.
63
(
14
),
145017
(
2018
).
9.
F. J.
Fry
and
J. E.
Barger
, “
Acoustical properties of the human skull
,”
J. Acoust. Soc. Am.
63
(
5
),
1576
1590
(
1978
).
10.
C. W.
Connor
,
G. T.
Clement
, and
K.
Hynynen
, “
A unified model for the speed of sound in cranial bone based on genetic algorithm optimization
,”
Phys. Med. Biol.
47
(
22
),
3925
3944
(
2002
).
11.
S.
Pichardo
,
V. W.
Sin
, and
K.
Hynynen
, “
Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
,”
Phys. Med. Biol.
56
(
1
),
219
250
(
2011
).
12.
S.
Pichardo
,
C.
Moreno-Hernández
,
R.
Andrew Drainville
,
V.
Sin
,
L.
Curiel
, and
K.
Hynynen
, “
A viscoelastic model for the prediction of transcranial ultrasound propagation: Application for the estimation of shear acoustic properties in the human skull
,”
Phys. Med. Biol.
62
,
6938
6962
(
2017
).
13.
L.
Marsac
,
D.
Chauvet
,
R. L.
Greca
,
A.-L.
Boch
,
K.
Chaumoitre
,
M.
Tanter
, and
J.-F.
Aubry
, “
Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 mHz
,”
Int. J. Hyperthermia
33
(
6
),
635
645
(
2017
).
14.
T. D.
Webb
,
S. A.
Leung
,
J.
Rosenberg
,
P.
Ghanouni
,
J.
Dahl
,
N. J.
Pelc
, and
K. B.
Pauly
, “
Measurements of the relationship between ct hounsfield units and acoustic velocity and how it changes with photon energy and reconstruction method
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
1111
1124
(
2018
).
15.
N.
McDannold
,
P. J.
White
, and
R.
Cosgrove
, “
Elementwise approach for simulating transcranial mri-guided focused ultrasound thermal ablation
,”
Phys. Rev. Res.
1
(
3
),
033205
(
2019
).
16.
K.
Hynynen
and
F. A.
Jolesz
, “
Demonstration of potential noninvasive ultrasound brain therapy through an intact skull
,”
Ultrasound Med. Biol.
24
(
2
),
275
283
(
1998
).
17.
N.
McDannold
,
N.
Vykhodtseva
,
S.
Raymond
,
F. A.
Jolesz
, and
K.
Hynynen
, “
MRI-guided targeted blood-brain barrier disruption with focused ultrasound: Histological findings in rabbits
,”
Ultrasound Med. Biol.
31
(
11
),
1527
1537
(
2005
).
18.
N.
McDannold
,
C. D.
Arvanitis
,
N.
Vykhodtseva
, and
M. S.
Livingstone
, “
Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques
,”
Cancer Res.
72
(
14
),
3652
3663
(
2012
).
19.
G. F.
Pinton
,
J.-F.
Aubry
, and
M.
Tanter
, “
Direct phase projection and transcranial focusing of ultrasound for brain therapy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
59
(
6
),
1149
1159
(
2012
).
20.
W. J.
Elias
,
N.
Lipsman
,
W. G.
Ondo
,
P.
Ghanouni
,
Y. G.
Kim
,
W.
Lee
,
M.
Schwartz
,
K.
Hynynen
,
A. M.
Lozano
,
B. B.
Shah
, D. Huss, R. F. Dallapiazza, R. Gwinn, J. Witt, S. Ro, H. M. Eisenberg, P. S. Fishman,D. Gandhi, C. H. Halpern, R. Chuang, K. Butts Pauly, T. S. Tierney, M. T. Hayes, G. Rees Cosgrove, T. Yamaguchi, K. Abe, T. Taira, and J. W. Chang, “
A randomized trial of focused ultrasound thalamotomy for essential tremor
,”
New England J. Med.
375
(
8
),
730
739
(
2016
).
21.
G.
Maimbourg
,
A.
Houdouin
,
T.
Deffieux
,
M.
Tanter
, and
J.-F.
Aubry
, “
3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers
,”
Phys. Med. Biol.
63
(
2
),
025026
(
2018
).
22.
S.
Jiménez-Gambín
,
N.
Jiménez
,
J. M.
Benlloch
, and
F.
Camarena
, “
Holograms to focus arbitrary ultrasonic fields through the skull
,”
Phys. Rev. Appl.
12
(
1
),
014016
(
2019
).
23.
A. E.
Bond
,
B. B.
Shah
,
D. S.
Huss
,
R. F.
Dallapiazza
,
A.
Warren
,
M. B.
Harrison
,
S. A.
Sperling
,
X.-Q.
Wang
,
R.
Gwinn
,
J.
Witt
, S. Ro, and W. Jeffrey Elias, “
Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: A randomized clinical trial
,”
JAMA Neurol.
74
(
12
),
1412
1418
(
2017
).
24.
N.
Lipsman
,
Y.
Meng
,
A. J.
Bethune
,
Y.
Huang
,
B.
Lam
,
M.
Masellis
,
N.
Herrmann
,
C.
Heyn
,
I.
Aubert
,
A.
Boutet
, G. S. Smith, K. Hynynen and S. E. Black, “
Blood–brain barrier opening in Alzheimer's disease using R-guided focused ultrasound
,”
Nat. Commun.
9
(
1
),
1
8
(
2018
).
25.
Y.
Meng
,
R. M.
Reilly
,
R. C.
Pezo
,
M.
Trudeau
,
A.
Sahgal
,
A.
Singnurkar
,
J.
Perry
,
S.
Myrehaug
,
C. B.
Pople
,
B.
Davidson
, , M. Llinas, C. Hyen, Y. Huang, C. Hamani, S.suppiah, K. Hynynen, and N. Lipsman, “
Mr-guided focused ultrasound enhances delivery of trastuzumab to her2-positive brain metastases
,”
Sci. Trans. Med.
13
(
615
),
eabj4011
(
2021
).
26.
T. D.
Webb
,
S. A.
Leung
,
P.
Ghanouni
,
J. J.
Dahl
,
N. J.
Pelc
, and
K. B.
Pauly
, “
Acoustic attenuation: Multifrequency measurement and relationship to CT and MR imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
68
,
1532
1535
(
2021
).
27.
R.
Xu
and
M.
Anne O'Reilly
, “
A spine-specific phased array for transvertebral ultrasound therapy: Design & simulation
,”
IEEE Trans. Biomed. Eng.
67
,
256
267
(
2020
).
28.
P. H. F.
Nicholson
,
M. J.
Haddaway
, and
M. W. J.
Davie
, “
The dependence of ultrasonic properties on orientation in human vertebral bone
,”
Phys. Med. Biol.
39
(
6
),
1013
1024
(
1994
).
29.
D.
Hans
,
C.
Wu
,
C. F.
Njeh
,
S.
Zhao
,
P.
Augat
,
D.
Newitt
,
T.
Link
,
Y.
Lu
,
S.
Majumdar
, and
H. K.
Genant
, “
Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity
,”
Calcified Tissue Int.
64
(
1
),
18
23
(
1999
).
30.
N.
Murashima
,
I.
Michimoto
,
D.
Koyama
, and
M.
Matsukawa
, “
Anisotropic longitudinal wave propagation in swine skull
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
68
,
65
71
(
2021
).
31.
K. A.
Wear
, “
Mechanisms of interaction of ultrasound with cancellous bone: A review
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
67
,
454
482
(
2020
).
32.
C. M.
Gdyczynski
,
A.
Manbachi
,
S.
Hashemi
,
B.
Lashkari
, and
R. S. C.
Cobbold
, “
On estimating the directionality distribution in pedicle trabecular bone from micro-CT images
,”
Physiol. Meas.
35
(
12
),
2415
2428
(
2014
).
33.
G. P.
Pal
,
L.
Cosio
, and
R. V.
Routal
, “
Trajectory architecture of the trabecular bone between the body and the neural arch in human vertebrae
,”
Anatomical Rec.
222
(
4
),
418
425
(
1988
).
34.
G. P.
Pal
and
R. V.
Routal
, “
The role of the vertebral laminae in the stability of the cervical spine
,”
J. Anatomy
188
,
485
489
(
1996
).
35.
C. M.
Whyne
,
S. S.
Hu
,
S.
Klisch
, and
J. C.
Lotz
, “
Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling
,”
Spine
23
(
8
),
899
907
(
1998
).
36.
P. H. F.
Nicholson
,
G.
Lowet
,
C. M.
Langton
,
J.
Dequeker
, and
G.
Van der Perre
, “
A comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone
,”
Phys. Med. Biol.
41
(
11
),
2421
2435
(
1996
).
37.
J. J.
Kaufman
,
W.
Xu
,
A. E.
Chiabrera
, and
R. S.
Siffert
, “
Diffraction effects in insertion mode estimation of ultrasonic group velocity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
(
2
),
232
242
(
1995
).
38.
R.
Shahar
,
P.
Zaslansky
,
M.
Barak
,
A. A.
Friesem
,
J. D.
Currey
, and
S.
Weiner
, “
Anisotropic Poisson's ratio and compression modulus of cortical bone determined by speckle interferometry
,”
J. Biomech.
40
(
2
),
252
264
(
2007
).
39.
P.
Jason White
,
G. T.
Clement
, and
K.
Hynynen
, “
Longitudinal and shear mode ultrasound propagation in human skull bone
,”
Ultrasound Med. Biol.
32
(
7
),
1085
1096
(
2006
).
40.
R. M.
Jones
,
M. A.
O'Reilly
, and
K.
Hynynen
, “
Transcranial passive acoustic mapping with hemispherical sparse arrays using ct-based skull-specific aberration corrections: A simulation study
,”
Phys. Med. Biol.
58
(
14
),
4981
5005
(
2013
).
41.
P. J.
White
,
S.
Palchaudhuri
,
K.
Hynynen
, and
G. T.
Clement
, “
The effects of desiccation on skull bone sound speed in porcine models
,”
IEEE Trans. Ultrason. Ferroelectr. Frequ. Control
54
(
8
),
1708
1710
(
2007
).
42.
W.
Limthongkul
,
E. E.
Karaikovic
,
J. W.
Savage
, and
A.
Markovic
, “
Volumetric analysis of thoracic and lumbar vertebral bodies
,”
Spine J.
10
(
2
),
153
158
(
2010
).
43.
N.
Lipsman
,
M. L.
Schwartz
,
Y.
Huang
,
L.
Lee
,
T.
Sankar
,
M.
Chapman
,
K.
Hynynen
, and
A. M.
Lozano
, “
Mr-guided focused ultrasound thalamotomy for essential tremor: A proof-of-concept study
,”
Lancet Neurol.
12
(
5
),
462
468
(
2013
).
44.
D.
Dragomir-Daescu
,
C.
Salas
,
S.
Uthamaraj
, and
T.
Rossman
, “
Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings
,”
J. Biomech.
48
(
1
),
153
161
(
2015
).
45.
H.
Montanaro
,
C.
Pasquinelli
,
H. J.
Lee
,
H.
Kim
,
H. R.
Siebner
,
N.
Kuster
,
A.
Thielscher
, and
E.
Neufeld
, “
The impact of ct image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations
,”
J. Neural Eng.
18
(
4
),
046041
(
2021
).
46.
M. E.
Launey
,
M. J.
Buehler
, and
R. O.
Ritchie
, “
On the mechanistic origins of toughness in bone
,”
Annu. Rev. Mater. Res.
40
,
25
53
(
2010
).
47.
S.-M. P.
Fletcher
and
M. A.
O'Reilly
, “
Analysis of multifrequency and phase keying strategies for focusing ultrasound to the human vertebral canal
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
12
),
2322
2331
(
2018
).
48.
K. A.
Wear
,
C.
Baker
, and
P.
Miloro
, “
Directivity and frequency-dependent effective sensitive element size of needle hydrophones: Predictions from four theoretical forms compared with measurements
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
(
10
),
1781
1788
(
2018
).
49.
F.
Viola
and
W. F.
Walker
, “
A comparison of the performance of time-delay estimators in medical ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
(
4
),
392
401
(
2003
).
50.
P.
Hasgall
,
F. D.
Gennaro
,
C.
Baumgartner
,
E.
Neufeld
,
M. C.
Gosselin
,
D.
Payne
,
A.
Klingenböck
, and
N.
Kuster
, “
IT'IS database for thermal and electromagnetic parameters of biological tissues version 3.0
,” https://itis.swiss/virtual-population/tissue-properties/database/ (
2015
) (last accessed 3 August 2018).
51.
H. B.
Mitchell
,
Image Fusion: Theories, Techniques and Applications
(
Springer Science & Business Media
,
New York
,
2010
).
52.
D.
Modena
,
M.
Baragona
,
D.
Bošnački
,
B. J. T.
Breuer
,
A.
Elevelt
,
R. T. H.
Maessen
,
P. A. J.
Hilbers
, and
H. M. M.
Ten Eikelder
, “
Modeling the interference between shear and longitudinal waves under high intensity focused ultrasound propagation in bone
,”
Phys. Med. Biol.
63
(
23
),
235024
(
2018
).
53.
K. R.
Marutyan
,
M. R.
Holland
, and
J. G.
Miller
, “
Anomalous negative dispersion in bone can result from the interference of fast and slow waves
,”
J. Acoust. Soc. Am.
120
(
5
),
EL55
EL61
(
2006
).
54.
C. C.
Anderson
,
K. R.
Marutyan
,
M. R.
Holland
,
K. A.
Wear
, and
J. G.
Miller
, “
Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone
,”
J. Acoust. Soc. Am.
124
(
3
),
1781
1789
(
2008
).
55.
A.
Hosokawa
,
T.
Otani
,
T.
Suzaki
,
Y.
Kubo
, and
S.
Takai
, “
Influences of trabecular structure on ultrasonic wave propagation in bovine cancellous bone
,”
Jpn. J. Appl. Phys.
36
(
5S
),
3233
3237
(
1997
).
56.
E.
Bossy
,
F.
Padilla
,
F.
Peyrin
, and
P.
Laugier
, “
Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography
,”
Phys. Med. Biol.
50
(
23
),
5545
5556
(
2005
).
57.
M.
Fellah
,
Z.
El Abiddine Fellah
,
F. G.
Mitri
,
E.
Ogam
, and
C.
Depollier
, “
Transient ultrasound propagation in porous media using biot theory and fractional calculus: Application to human cancellous bone
,”
J. Acoust. Soc. Am.
133
(
4
),
1867
1881
(
2013
).
58.
G. T.
Clement
and
K.
Hynynen
, “
Correlation of ultrasound phase with physical skull properties
,”
Ultrasound Med. Biol.
28
(
5
),
617
624
(
2002
).
59.
B. L.
Riggs
,
H. W.
Wahner
,
W. L.
Dunn
,
R. B.
Mazess
,
K. P.
Offord
, and
L. J.
Melton
 III
, “
Differential changes in bone mineral density of the appendicular and axial skeleton with aging: Relationship to spinal osteoporosis
,”
J. Clin. Investig.
67
(
2
),
328
335
(
1981
).
60.
W. S.
Chang
,
H. H.
Jung
,
E.
Zadicario
,
I.
Rachmilevitch
,
T.
Tlusty
,
S.
Vitek
, and
J. W.
Chang
, “
Factors associated with successful magnetic resonance-guided focused ultrasound treatment: Efficiency of acoustic energy delivery through the skull
,”
J. Neurosurg.
124
(
2
),
411
416
(
2016
).
61.
J.-F.
Aubry
,
M.
Tanter
,
M.
Pernot
,
J.-L.
Thomas
, and
M.
Fink
, “
Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans
,”
J. Acoust. Soc. Am
113
(
1
),
84
93
(
2003
).
62.
F.
Marquet
,
M.
Pernot
,
J.-F.
Aubry
,
G.
Montaldo
,
L.
Marsac
,
M.
Tanter
, and
M.
Fink
, “
Non-invasive transcranial ultrasound therapy based on a 3d ct scan: Protocol validation and in vitro results
,”
Phys. Med. Biol.
54
(
9
),
2597
2613
(
2009
).
63.
B.
Martin
and
J. H.
McElhaney
, “
The acoustic properties of human skull bone
,”
J. Biomed. Mater. Res.
5
(
4
),
325
333
(
1971
).
64.
A. D.
Francis
,
Physical Properties of Tissues: A Comprehensive Reference Book
(
Academic Press
,
New York
,
1990
).
65.
M. L.
McKelvie
and
S. B.
Palmer
, “
The interaction of ultrasound with cancellous bone
,”
Phys. Med. Biol.
36
(
10
),
1331
1340
(
1991
).
66.
M.
Bastir
,
A.
Higuero
,
L.
Ríos
, and
D. G.
Martínez
, “
Three-dimensional analysis of sexual dimorphism in human thoracic vertebrae: Implications for the respiratory system and spine morphology
,”
Am. J. Phys. Anthropol.
155
(
4
),
513
521
(
2014
).
67.
A.
Pakdel
,
M.
Hardisty
,
J.
Fialkov
, and
C.
Whyne
, “
Restoration of thickness, density, and volume for highly blurred thin cortical bones in clinical ct images
,”
Ann. Biomed. Eng.
44
(
11
),
3359
3371
(
2016
).
68.
S. S.
Mehta
,
O. K.
Öz
, and
P. P.
Antich
, “
Bone elasticity and ultrasound velocity are affected by subtle changes in the organic matrix
,”
J. Bone Miner. Res.
13
(
1
),
114
121
(
1998
).
69.
B. K.
Hoffmeister
,
S. A.
Whitten
,
S. C.
Kaste
, and
J. Y.
Rho
, “
Effect of collagen and mineral content on the high-frequency ultrasonic properties of human cancellous bone
,”
Osteoporosis Int.
13
(
1
),
26
32
(
2002
).
70.
P.
Droin
,
G.
Berger
, and
P.
Laugier
, “
Velocity dispersion of acoustic waves in cancellous bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
(
3
),
581
592
(
1998
).
71.
B. E.
Treeby
and
B. T.
Cox
, “
k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields
,”
J. Biomed. Opt.
15
(
2
),
021314
(
2010
).
72.
B. E.
Treeby
,
J.
Jaros
,
D.
Rohrbach
, and, and
B. T.
Cox
, “
Modelling elastic wave propagation using the k-wave MATLAB toolbox
,” in
Proceedings of the 2014 IEEE International Ultrasonics Symposium
, Chicago, IL (September 3–6,
2014
), pp.
146
149
.
You do not currently have access to this content.