There has been increased interest in improving severe weather detection by supplementing the conventional operational radar network with an infrasound observation network, which may be able to detect distinct sub-audible signatures from tornadic supercells. While there is evidence that tornadic thunderstorms exhibit observable infrasound signals, what is not well-understood is whether these infrasound signals are unique to tornadic supercells (compared to nontornadic supercells) or whether there is useful signal prior to tornadogenesis, which would be most relevant to forecasters. Using simulations of supercells, tailored to represent acoustic waves with frequencies from 0.1 to 2 Hz, spectral analysis reveals that both nontornadic and pre-tornadic supercells produce strikingly similar sound pressure levels at the surface, even in close spatial proximity to the storms (less than 20 km). Sensitivity tests employing varying microphysics schemes also show similar acoustic emissions between supercells. Riming of supercooled water droplets in the upper-troposphere is the sole mechanism generating high-frequency pressure waves in supercells prior to tornadogenesis or during tornadogenesis-failure; however, riming occurs continuously in mature nontornadic and tornadic supercells. Our simulations found no clear evidence that infrasound produced by supercells prior to tornado formation (compared to nontornadic supercells) is sufficiently distinct to improve lead-time of tornado warnings.

1.
Abdullah
,
A. J.
(
1966
). “
The ‘musical’ sound emitted by a tornado
,”
Mon. Wea. Rev.
94
(
4
),
213
220
.
2.
Adlerman
,
E. J.
,
Droegemeier
,
K. K.
, and
Davies-Jones
,
R.
(
1999
). “
A numerical simulation of cyclic mesocyclogenesis
,”
J. Atmos. Sci.
56
(
13
),
2045
2069
.
3.
Akhalkatsi
,
M.
, and
Gogoberidze
,
G.
(
2009
). “
Infrasound generation by tornadic supercell storms
,”
Quart. J. Roy. Meteor. Soc.
135
(
641
),
935
940
.
4.
Akhalkatsi
,
M.
, and
Gogoberidze
,
G.
(
2011
). “
Spectrum of infrasound radiation from supercell storms
,”
Quart. J. Roy. Meteor. Soc.
137
(
654
),
229
235
.
5.
Anderson-Frey
,
A. K.
,
Richardson
,
Y. P.
,
Dean
,
A. R.
,
Thompson
,
R. L.
, and
Smith
,
B. T.
(
2016
). “
Investigation of near-storm environments for tornado events and warnings
,”
Wea. Forecasting
31
(
6
),
1771
1790
.
6.
Beck
,
J. R.
,
Schroeder
,
J. L.
, and
Wurman
,
J. M.
(
2006
). “
High-resolution dual-Doppler analyses of the 29 May 2001 Kress, Texas, cyclic supercell
,”
Mon. Wea. Rev.
134
(
11
),
3125
3148
.
7.
Bedard
,
A.
(
2005
). “
Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms
,”
Mon. Wea. Rev.
133
(
1
),
241
263
.
8.
Bedard
,
A.
, and
Georges
,
T.
(
2000
). “
Atmospheric infrasound
,”
Phys. Today
53
(
3
),
32
37
.
9.
Bedard
,
A. J.
, Jr.
,
Bartram
,
B. W.
,
Entwistle
,
B.
,
Golden
,
J.
,
Hodanish
,
S.
,
Jones
,
R. M.
,
Nishiyama
,
R. T.
,
Keane
,
A. N.
,
Mooney
,
L.
,
Nicholls
,
M.
,
Szoke
,
E. J.
,
Thaler
,
E.
, and
Welsh
,
D. C.
(
2004
). “
Overview of the ISNet data set and conclusions and recommendations from a March 2004 workshop to review ISNet data
,” in
Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc, Paper
, Vol.
2
.
10.
Blair
,
S. F.
,
Laflin
,
J. M.
,
Cavanaugh
,
D. E.
,
Sanders
,
K. J.
,
Currens
,
S. R.
,
Pullin
,
J. I.
,
Cooper
,
D. T.
,
Deroche
,
D. R.
,
Leighton
,
J. W.
,
Fritchie
,
R. V.
,
Mezeul II
,
M. J.
,
Goudeau
,
B. T.
,
Kreller
,
S. J.
,
Bosco
,
J. J.
,
Kelly
,
C. M.
, and
Mallinson
,
H. M.
(
2017
). “
High-resolution hail observations: Implications for NWS warning operations
,”
Wea. Forecasting
32
(
3
),
1101
1119
.
11.
Borges
,
R.
,
Carmona
,
M.
,
Costa
,
B.
, and
Don
,
W. S.
(
2008
). “
An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
,”
J. Comput. Phys.
227
(
6
),
3191
3211
.
12.
Bowman
,
H. S.
, and
Bedard
,
A. J.
(
1971
). “
Observations of infrasound and subsonic disturbances related to severe weather
,”
Geophysical J. Int.
26
(
1–4
),
215
242
.
13.
Broadbent
,
E.
(
1976
). “
Jet noise radiation from discrete vortices
,” Technical Report No. 3826 (Aerodynamics Department, RAE).
14.
Brooks
,
E. M.
(
1951
). “
Tornadoes and related phenomena
,” in
Compendium of Meteorology
(
Springer
,
New York
), pp.
673
680
.
15.
Brooks
,
H. E.
, and
Correia
,
J.
(
2018
). “
Long-term performance metrics for National Weather Service tornado warnings
,”
Wea. Forecasting
33
(
6
),
1501
1511
.
16.
Bryan
,
G. H.
, and
Fritsch
,
J. M.
(
2002
). “
A benchmark simulation for moist nonhydrostatic numerical models
,”
Mon. Wea. Rev.
130
(
12
),
2917
2928
.
17.
Bryan
,
G. H.
, and
Morrison
,
H.
(
2012
). “
Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics
,”
Mon. Wea. Rev.
140
(
1
),
202
225
.
18.
Bryan
,
G.
(2020). (personal communication).
19.
Burgess
,
D. W.
, and
Lemon
,
L. R.
(
1990
). “
Severe thunderstorm detection by radar
,” in
Radar in Meteorology
(
Springer
,
New York
), pp.
619
647
.
20.
Byers
,
H. R.
, and
Braham
,
R. R.
(
1949
).
The Thunderstorm: Report of the Thunderstorm Project
(
US Government Printing Office
,
Washington, DC
).
21.
Christie
,
D.
, and
Campus
,
P.
(
2010
). “
The IMS infrasound network: Design and establishment of infrasound stations
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
29
75
.
22.
Coffer
,
B. E.
, and
Parker
,
M. D.
(
2015
). “
Impacts of increasing low-level shear on supercells during the early evening transition
,”
Mon. Wea. Rev.
143
(
5
),
1945
1969
.
23.
Coffer
,
B. E.
, and
Parker
,
M. D.
(
2017
). “
Simulated supercells in nontornadic and tornadic VORTEX2 environments
,”
Mon. Wea. Rev.
145
(
1
),
149
180
.
24.
Coffer
,
B. E.
, and
Parker
,
M. D.
(
2018
). “
Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments?
,”
Mon. Wea. Rev.
146
(
8
),
2667
2693
.
25.
Coffer
,
B. E.
,
Parker
,
M. D.
,
Dahl
,
J. M.
,
Wicker
,
L. J.
, and
Clark
,
A. J.
(
2017
). “
Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments
,”
Mon. Wea. Rev.
145
(
11
),
4605
4625
.
26.
Coffer
,
B. E.
,
Parker
,
M. D.
,
Thompson
,
R. L.
,
Smith
,
B. T.
, and
Jewell
,
R. E.
(
2019
). “
Using near-ground storm relative helicity in supercell tornado forecasting
,”
Wea. Forecasting
34
(
5
),
1417
1435
.
27.
Coffer
,
B. E.
,
Taszarek
,
M.
, and
Parker
,
M. D.
(
2020
). “
Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses
,”
Wea. Forecasting
35
(
6
),
2621
2638
.
28.
Dahl
,
J. M.
(
2015
). “
Near-ground rotation in simulated supercells: On the robustness of the baroclinic mechanism
,”
Mon. Wea. Rev.
143
(
12
),
4929
4942
.
29.
Dahl
,
J. M.
,
Parker
,
M. D.
, and
Wicker
,
L. J.
(
2014
). “
Imported and storm-generated near-ground vertical vorticity in a simulated supercell
,”
J. Atmos. Sci.
71
(
8
),
3027
3051
.
30.
Davies-Jones
,
R.
(
1982
). “
Observational and theoretical aspects of tornadogenesis
,” in
Intense Atmospheric Vortices
(
Springer
,
New York
), pp.
175
189
.
31.
Davies-Jones
,
R.
(
1984
). “
Streamwise vorticity: The origin of updraft rotation in supercell storms
,”
J. Atmos. Sci.
41
(
20
),
2991
3006
.
32.
Davies-Jones
,
R.
(
2015
). “
A review of supercell and tornado dynamics
,”
Atmos. Res.
158–159
,
274
291
.
33.
Davies-Jones
,
R.
, and
Brooks
,
H.
(
1993
). “
Mesocyclogenesis from a theoretical perspective
,” in
Tornado: Its Structure, Dynamics, Prediction, and Hazards
(
AGU
,
Washginton, DC
), pp.
105
114
.
34.
Davies-Jones
,
R.
,
Trapp
,
R. J.
, and
Bluestein
,
H. B.
(
2001
). “
Tornadoes and tornadic storms
,” in
Severe Convective Storms
(
Springer
,
New York
), pp.
167
221
.
35.
Davis
,
J. M.
, and
Parker
,
M. D.
(
2014
). “
Radar climatology of tornadic and nontornadic vortices in high-shear, low-cape environments in the mid-atlantic and southeastern united states
,”
Wea. Forecasting
29
(
4
),
828
853
.
36.
Dawson
,
D. T.
 II
,
Mansell
,
E. R.
,
Jung
,
Y.
,
Wicker
,
L. J.
,
Kumjian
,
M. R.
, and
Xue
,
M.
(
2014
). “
Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail
,”
J. Atmos. Sci.
71
(
1
),
276
299
.
37.
Deardorff
,
J. W.
(
1980
). “
Stratocumulus-capped mixed layers derived from a three-dimensional model
,”
Bound.-Layer Meteor.
18
(
4
),
495
527
.
38.
Dunn
,
R. W.
,
Meredith
,
J. A.
,
Lamb
,
A. B.
, and
Kessler
,
E. G.
(
2016
). “
Detection of atmospheric infrasound with a ring laser interferometer
,”
J. Appl. Phys.
120
(
12
),
123109
.
39.
Elbing
,
B. R.
,
Petrin
,
C. E.
, and
Van Den Broeke
,
M. S.
(
2018
). “
Infrasound measurements from a tornado in Oklahoma
,”
Proc. Mtg. Acoust.
33
,
045003
.
40.
Elbing
,
B. R.
,
Petrin
,
C. E.
, and
Van Den Broeke
,
M. S.
(
2019
). “
Measurement and characterization of infrasound from a tornado producing storm
,”
J. Acoust. Soc. Am.
146
(
3
),
1528
1540
.
41.
Farges
,
T.
, and
Blanc
,
E.
(
2010
). “
Characteristics of infrasound from lightning and sprites near thunderstorm areas
,”
J. Geophys. Res.: Space Phys.
115
(
A6
),
A00E31
, .
42.
Flora
,
S.
(
1958
).
Tornadoes of the United States
(Revised edition) (
University of Oklahoma Press
,
Norman, OK
).
43.
Flournoy
,
M. D.
,
Coniglio
,
M. C.
,
Rasmussen
,
E. N.
,
Furtado
,
J. C.
, and
Coffer
,
B. E.
(
2020
). “
Modes of storm-scale variability and tornado potential in VORTEX2 near-and far-field tornadic environments
,”
Mon. Wea. Rev.
148
(
10
),
4185
4207
.
44.
Frazier
,
W. G.
,
Talmadge
,
C.
,
Park
,
J.
,
Waxler
,
R.
, and
Assink
,
J.
(
2014
). “
Acoustic detection, tracking, and characterization of three tornadoes
,”
J. Acoust. Soc. Am.
135
(
4
),
1742
1751
.
45.
French
,
M. M.
,
Bluestein
,
H. B.
,
PopStefanija
,
I.
,
Baldi
,
C. A.
, and
Bluth
,
R. T.
(
2013
). “
Reexamining the vertical development of tornadic vortex signatures in supercells
,”
Mon. Wea. Rev.
141
(
12
),
4576
4601
.
46.
Georges
,
T.
(
1982
). “
Infrasound from thunderstorms
,” in Instruments and Techniques for Thunderstorm Observation and Analysis (University of Oklahoma Press, Norman, OK); available at https://books.google.com/books?hl=en&lr=&id=CzVRAAAAMAAJ&oi=fnd&pg=PA117&dq=Infrasound+from+thunderstorms+georges+1982&ots=bRdHl7BT7I&sig=XcxIv992QV5pqn1UeT7SJoY34bE#v=onepage&q=Infrasound%20from%20thunderstorms%20georges%201982&f=false.
47.
Georges
,
T.
, and
Greene
,
G. E.
(
1975
). “
Infrasound from convective storms. Part IV. Is it useful for storm warning?
,”
J. Appl. Meteor. Climatol.
14
(
7
),
1303
1316
.
48.
Goldacker
,
N. A.
, and
Parker
,
M. D.
(
2021
). “
Low-level updraft intensification in response to environmental wind profiles
,”
J. Atmos. Sci.
78
,
2763
2781
.
49.
Grzych
,
M. L.
,
Lee
,
B. D.
, and
Finley
,
C. A.
(
2007
). “
Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS
,”
Mon. Wea. Rev.
135
(
1
),
240
246
.
50.
Howe
,
M.
(
1975
). “
Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute
,”
J. Fluid Mech.
71
(
4
),
625
673
.
51.
Igel
,
A. L.
,
Igel
,
M. R.
, and
van den Heever
,
S. C.
(
2015
). “
Make it a double? Sobering results from simulations using single-moment microphysics schemes
,”
J. Atmos. Sci.
72
(
2
),
910
925
.
52.
Kain
,
J. S.
,
Weiss
,
S. J.
,
Bright
,
D. R.
,
Baldwin
,
M. E.
,
Levit
,
J. J.
,
Carbin
,
G. W.
,
Schwartz
,
C. S.
,
Weisman
,
M. L.
,
Droegemeier
,
K. K.
,
Weber
,
D. B.
, and
Thomas
,
K. W.
(
2008
). “
Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP
,”
Wea. Forecasting
23
(
5
),
931
952
.
53.
Klees
,
A. M.
,
Richardson
,
Y. P.
,
Markowski
,
P. M.
,
Weiss
,
C. T.
,
Wurman
,
J. M.
, and
Kosiba
,
K.
(
2016
). “
Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010
,”
Mon. Wea. Rev.
144
(
9
),
3201
3231
.
54.
Kumjian
,
M. R.
,
Khain
,
A. P.
,
Benmoshe
,
N.
,
Ilotoviz
,
E.
,
Ryzhkov
,
A. V.
, and
Phillips
,
V. T.
(
2014
). “
The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model
,”
J. Appl. Meteor. Climatol.
53
(
7
),
1820
1843
.
55.
Kumjian
,
M. R.
, and
Ryzhkov
,
A. V.
(
2008
). “
Polarimetric signatures in supercell thunderstorms
,”
J. Appl. Meteor. Climatol.
47
(
7
),
1940
1961
.
56.
Le Pichon
,
A.
,
Blanc
,
E.
, and
Hauchecorne
,
A.
(
2010
).
Infrasound monitoring for atmospheric studies
(
Springer Science & Business Media
,
New York
).
57.
Lee
,
B. D.
,
Finley
,
C. A.
, and
Karstens
,
C. D.
(
2012
). “
The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges
,”
Mon. Wea. Rev.
140
(
11
),
3419
3441
.
58.
Lighthill
,
M. J.
(
1952
). “
On sound generated aerodynamically I. general theory
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
211
(
1107
),
564
587
.
59.
Lin
,
Y.-L.
,
Farley
,
R. D.
, and
Orville
,
H. D.
(
1983
). “
Bulk parameterization of the snow field in a cloud model
,”
J. Appl. Meteor. Climatol.
22
(
6
),
1065
1092
.
60.
Loeffler
,
S. D.
,
Kumjian
,
M. R.
,
Jurewicz
,
M.
, and
French
,
M. M.
(
2020
). “
Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting
,”
Geophys. Res. Lett.
47
(
12
),
e2020GL088242
, .
61.
Maddox
,
R. A.
(
1976
). “
An evaluation of tornado proximity wind and stability data
,”
Mon. Wea. Rev.
104
(
2
),
133
142
.
62.
Mansell
,
E. R.
(
2010
). “
On sedimentation and advection in multimoment bulk microphysics
,”
J. Atmos. Sci.
67
(
9
),
3084
3094
.
63.
Mansell
,
E. R.
,
Ziegler
,
C. L.
, and
Bruning
,
E. C.
(
2010
). “
Simulated electrification of a small thunderstorm with two-moment bulk microphysics
,”
J. Atmos. Sci.
67
(
1
),
171
194
.
64.
Markowski
,
P. M.
(
2008
). “
A comparison of the midlevel kinematic characteristics of a pair of supercell thunderstorms observed by airborne Doppler radar
,”
Atmos. Res.
88
(
3
),
314
322
.
65.
Markowski
,
P. M.
(
2016
). “
An idealized numerical simulation investigation of the effects of surface drag on the development of near-surface vorticity in supercell thunderstorms
,”
J. Atmos. Sci.
73
(
11
),
4349
4385
.
66.
Markowski
,
P. M.
(
2020
). “
What is the intrinsic predictability of tornadic supercell thunderstorms?
,”
Mon. Wea. Rev.
148
(
8
),
3157
3180
.
67.
Markowski
,
P. M.
, and
Richardson
,
Y. P.
(
2009
). “
Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research
,”
Atmos. Res.
93
(
1-3
),
3
10
.
68.
Markowski
,
P. M.
, and
Richardson
,
Y. P.
(
2014
). “
The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations
,”
J. Atmos. Sci.
71
(
1
),
243
275
.
69.
Markowski
,
P. M.
,
Richardson
,
Y. P.
,
Majcen
,
M.
,
Marquis
,
J.
, and
Wurman
,
J.
(
2011
). “
Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars
,”
Electron. J. Severe Storms Meteor.
6
(
3
),
1
48
; available at https://ejssm.org/archives/wp-/uploads/2021/09/vol6-3.pdf.
70.
Markowski
,
P. M.
,
Richardson
,
Y. P.
,
Marquis
,
J.
,
Davies-Jones
,
R.
,
Wurman
,
J.
,
Kosiba
,
K.
,
Robinson
,
P.
,
Rasmussen
,
E.
, and
Dowell
,
D.
(
2012
). “
The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX2. Part II: Intensification of low-level rotation
,”
Mon. Wea. Rev.
140
(
9
),
2916
2938
.
71.
Markowski
,
P. M.
,
Richardson
,
Y. P.
,
Rasmussen
,
E.
,
Straka
,
J.
,
Davies-Jones
,
R.
, and
Trapp
,
R. J.
(
2008
). “
Vortex lines within low-level mesocyclones obtained from pseudo-dual-Doppler radar observations
,”
Mon. Wea. Rev.
136
(
9
),
3513
3535
.
72.
Markowski
,
P. M.
,
Straka
,
J. M.
, and
Rasmussen
,
E. N.
(
2002
). “
Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells
,”
Mon. Wea. Rev.
130
(
7
),
1692
1721
.
73.
Matoza
,
R.
,
Fee
,
D.
,
Green
,
D.
, and
Mialle
,
P.
(
2019
). “
Volcano infrasound and the international monitoring system
,” in
Infrasound Monitoring for Atmospheric Studies
(
Springer
,
New York
), pp.
1023
1077
.
74.
Morrison
,
H.
,
Curry
,
J.
, and
Khvorostyanov
,
V.
(
2005
). “
A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description
,”
J. Atmos. Sci.
62
(
6
),
1665
1677
.
75.
Murdzek
,
S. S.
,
Markowski
,
P. M.
, and
Richardson
,
Y. P.
(
2020a
). “
Simultaneous dual-Doppler and mobile mesonet observations of streamwise vorticity currents in three supercells
,”
Mon. Wea. Rev.
148
(
12
),
4859
4874
.
76.
Murdzek
,
S. S.
,
Markowski
,
P. M.
,
Richardson
,
Y. P.
, and
Tanamachi
,
R. L.
(
2020b
). “
Processes preventing the development of a significant tornado in a Colorado supercell on 26 May 2010
,”
Mon. Wea. Rev.
148
(
5
),
1753
1778
.
77.
Nielsen
,
E. R.
, and
Schumacher
,
R. S.
(
2020
). “
Observations of extreme short-term precipitation associated with supercells and mesovortices
,”
Mon. Wea. Rev.
148
(
1
),
159
182
.
78.
Okubo
,
A.
(
1970
). “
Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences
,”
Deep-Sea Res.
17
(
3
),
445
454
.
79.
Orf
,
L.
,
Wilhelmson
,
R.
,
Lee
,
B.
,
Finley
,
C.
, and
Houston
,
A.
(
2017
). “
Evolution of a long-track violent tornado within a simulated supercell
,”
Bull. Amer. Meteor. Soc.
98
(
1
),
45
68
.
80.
Parker
,
M. D.
(
2014
). “
Composite VORTEX2 supercell environments from near-storm soundings
,”
Mon. Wea. Rev.
142
(
2
),
508
529
.
81.
Parker
,
M. D.
, and
Dahl
,
J. M.
(
2015
). “
Production of near-surface vertical vorticity by idealized downdrafts
,”
Mon. Wea. Rev.
143
(
7
),
2795
2816
.
82.
Petrin
,
C. E.
, and
Elbing
,
B. R.
(
2019
). “
Infrasound emissions from tornadoes and severe storms compared to potential tornadic generation mechanisms
,”
Proc. Mtg. Acoust.
36
,
045005
.
83.
Roberts
,
B.
,
Xue
,
M.
,
Schenkman
,
A. D.
, and
Dawson
,
D. T.
 II
(
2016
). “
The role of surface drag in tornadogenesis within an idealized supercell simulation
,”
J. Atmos. Sci.
73
(
9
),
3371
3395
.
84.
Rotunno
,
R.
, and
Klemp
,
J. B.
(
1982
). “
The influence of the shear-induced pressure gradient on thunderstorm motion
,”
Mon. Wea. Rev.
110
(
2
),
136
151
.
85.
Schecter
,
D. A.
(
2011
). “
A method for diagnosing the sources of infrasound in convective storm simulations
,”
J. Appl. Meteor. Climatol.
50
(
12
),
2526
2542
.
86.
Schecter
,
D. A.
(
2012a
). “
A brief critique of a theory used to interpret the infrasound of tornadic thunderstorms
,”
Mon. Wea. Rev.
140
(
7
),
2080
2089
.
87.
Schecter
,
D. A.
(
2012b
). “
In search of discernible infrasound emitted by numerically simulated tornadoes
,”
Dyn. Atmos. Oceans
57
,
27
44
.
88.
Schecter
,
D. A.
, and
Nicholls
,
M. E.
(
2010
). “
Generation of infrasound by evaporating hydrometeors in a cloud model
,”
J. Appl. Meteor. Climatol.
49
(
4
),
664
675
.
89.
Schecter
,
D. A.
,
Nicholls
,
M. E.
,
Persing
,
J.
,
Bedard
., Jr.,
A. J.
, and
Pielke
R. A.
, Sr.
(
2008
). “
Infrasound emitted by tornado-like vortices: Basic theory and a numerical comparison to the acoustic radiation of a single-cell thunderstorm
,”
J. Atmos. Sci.
65
(
3
),
685
713
.
90.
Schenkman
,
A. D.
,
Xue
,
M.
, and
Hu
,
M.
(
2014
). “
Tornadogenesis in a high-resolution simulation of the 8 May 2003 Oklahoma City supercell
,”
J. Atmos. Sci.
71
(
1
),
130
154
.
91.
Schmitter
,
E.
(
2010
). “
Brief communication ‘Modeling tornado dynamics and the generation of infrasound, electric magnetic fields
,’”
Natural Hazards Earth Syst. Sci.
10
(
2
),
295
298
.
92.
Scott
,
E. D.
,
Hayward
,
C. T.
,
Kubichek
,
R. F.
,
Hamann
,
J. C.
,
Pierre
,
J. W.
,
Comey
,
B.
, and
Mendenhall
,
T.
(
2007
). “
Single and multiple sensor identification of avalanche-generated infrasound
,”
Cold Regions Sci. Technol.
47
(
1-2
),
159
170
.
93.
Shabbott
,
C. J.
, and
Markowski
,
P. M.
(
2006
). “
Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms
,”
Mon. Wea. Rev.
134
(
5
),
1422
1441
.
94.
Sherburn
,
K. D.
, and
Parker
,
M. D.
(
2014
). “
Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments
,”
Wea. Forecasting
29
(
4
),
854
877
.
95.
Smith
,
B. T.
,
Thompson
,
R. L.
,
Grams
,
J. S.
,
Broyles
,
C.
, and
Brooks
,
H. E.
(
2012
). “
Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology
,”
Wea. Forecasting
27
(
5
),
1114
1135
.
96.
Stough
,
S. M.
,
Carey
,
L. D.
,
Schultz
,
C. J.
, and
Bitzer
,
P. M.
(
2017
). “
Investigating the relationship between lightning and mesocyclonic rotation in supercell thunderstorms
,”
Wea. Forecasting
32
(
6
),
2237
2259
.
97.
Szoke
,
E. J.
,
Bedard
,
A.
, Jr.
,
Thaler
,
E.
, and
Glancy
,
R.
(
2004
). “
A comparison of ISNet data with radar data for tornadic and potentially tornadic storms in northeast Colorado
,” in Proceedings of the 22nd Conference on Severe Local
Storms
,
October 3–8
,
Hyannis, MA
.
98.
Talmadge
,
C.
, and
Waxler
,
R.
(
2016
). “
Infrasound from tornados: Theory, measurement, and prospects for their use in early warning systems
,”
Acoust. Today
12
(
1
),
43
51
.
99.
Thompson
,
R. L.
,
Smith
,
B. T.
,
Grams
,
J. S.
,
Dean
,
A. R.
, and
Broyles
,
C.
(
2012
). “
Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments
,”
Wea. Forecasting
27
(
5
),
1136
1154
.
100.
Trapp
,
R. J.
(
1999
). “
Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX
,”
Mon. Wea. Rev.
127
(
7
),
1693
1705
.
101.
Trapp
,
R. J.
, and
Davies-Jones
,
R.
(
1997
). “
Tornadogenesis with and without a dynamic pipe effect
,”
J. Atmos. Sci.
54
(
1
),
113
133
.
102.
Trapp
,
R. J.
,
Stumpf
,
G. J.
, and
Manross
,
K. L.
(
2005
). “
A reassessment of the percentage of tornadic mesocyclones
,”
Wea. Forecasting
20
(
4
),
680
687
.
103.
Tuftedal
,
K. S.
,
French
,
M. M.
,
Kingfield
,
D. M.
, and
Snyder
,
J. C.
(
2021
). “
Observed bulk hook echo drop size distribution evolution in supercell tornadogenesis and tornadogenesis failure
,”
Mon. Wea. Rev.
149
(
8
),
2539
2557
.
104.
Van Den Broeke
,
M.
(
2021
). “
Polarimetric radar characteristics of tornadogenesis failure in supercell thunderstorms
,”
Atmosphere
12
(
5
),
581
; available at https://www.mdpi.com/2073-4433/12/5/581.
105.
Van Den Broeke
,
M. S.
(
2020
). “
A preliminary polarimetric radar comparison of pretornadic and nontornadic supercell storms
,”
Mon. Wea. Rev.
148
(
4
),
1567
1584
.
106.
Van Den Broeke
,
M. S.
,
Schultz
,
D. M.
,
Johns
,
R. H.
,
Evans
,
J. S.
, and
Hales
,
J. E.
(
2005
). “
Cloud-to-ground lightning production in strongly forced, low-instability convective lines associated with damaging wind
,”
Wea. Forecasting
20
(
4
),
517
530
.
107.
Wakimoto
,
R. M.
, and
Cai
,
H.
(
2000
). “
Analysis of a nontornadic storm during VORTEX 95
,”
Mon. Wea. Rev.
128
(
3
),
565
592
.
108.
Wakimoto
,
R. M.
,
Cai
,
H.
, and
Murphey
,
H. V.
(
2004
). “
The Superior, Nebraska supercell during BAMEX
,”
Bull. Am. Meteor. Soc.
85
(
8
),
1095
1106
.
109.
Walko
,
R. L.
(
1993
). “
Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds
,” in
The Tornado: Its Stucture, Dynamics, Prediction, and Hazards
, Vol.
79
(
AGU
,
Washington, DC
), pp.
89
95
.
110.
Walko
,
R. L.
,
Cotton
,
W. R.
,
Meyers
,
M.
, and
Harrington
,
J.
(
1995
). “
New rams cloud microphysics parameterization part i: The single-moment scheme
,”
Atmos. Res.
38
(
1-4
),
29
62
.
111.
Weiss
,
J.
(
1991
). “
The dynamics of enstrophy transfer in two-dimensional hydrodynamics
,”
Phys. D
48
(
2–3
),
273
294
.
112.
Weiss
,
C. C.
,
Dowell
,
D. C.
,
Schroeder
,
J. L.
,
Skinner
,
P. S.
,
Reinhart
,
A. E.
,
Markowski
,
P. M.
, and
Richardson
,
Y. P.
(
2015
). “
A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts
,”
Mon. Wea. Rev.
143
(
7
),
2736
2753
.
113.
Wilhelmson
,
R. B.
, and
Chen
,
C.-S.
(
1982
). “
A simulation of the development of successive cells along a cold outflow boundary
,”
J. Atmos. Sci.
39
(
7
),
1466
1483
.
114.
Wurman
,
J.
,
Dowell
,
D.
,
Richardson
,
Y.
,
Markowski
,
P.
,
Rasmussen
,
E.
,
Burgess
,
D.
,
Wicker
,
L.
, and
Bluestein
,
H. B.
(
2012
). “
The second Verification of the Origins of Rotation in Tornadoes EXperiment: VORTEX2
,”
Bull. Am. Meteor. Soc.
93
(
8
),
1147
1170
.
115.
Yokota
,
S.
,
Niino
,
H.
,
Seko
,
H.
,
Kunii
,
M.
, and
Yamauchi
,
H.
(
2018
). “
Important factors for tornadogenesis as revealed by high-resolution ensemble forecasts of the Tsukuba supercell tornado of 6 May 2012 in Japan
,”
Mon. Wea. Rev.
146
(
4
),
1109
1132
.
116.
Zhang
,
T.
,
Miller
,
S. A.
,
Ojeda
,
M. T.
, and
Gurley
,
K.
(
2020
). “
Prediction of long-range infrasound propagation from tornadoes based on new atmospheric boundary layer wind tunnel experiments
,”
J. Acoust. Soc. Am.
148
(
4
),
2493
2493
.
117.
Ziegler
,
C. L.
(
1985
). “
Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing
,”
J. Atmos. Sci.
42
(
14
),
1487
1509
.

Supplementary Material

You do not currently have access to this content.