Time reversal (TR) is a method of focusing wave energy at a point in space. The optimization of a TR demonstration is described, which knocks over one selected LEGO minifigure among other minifigures by focusing the vibrations within an aluminum plate at the target minifigure. The aim is to achieve a high repeatability of the demonstration along with reduced costs to create a museum exhibit. By comparing the minifigure's motion to the plate's motion directly beneath its feet, it is determined that a major factor inhibiting the repeatability is that the smaller vibrations before the focal event cause the minifigure to bounce repeatedly and it ends up being in the air during the main vibrational focal event, which was intended to launch the minifigure. The deconvolution TR technique is determined to be optimal in providing the demonstration repeatability. The amplitude, frequency, and plate thickness are optimized in a laboratory setting. An eddy current sensor is then used to reduce the costs, and the impact on the repeatability is determined. A description is given of the implementation of the demonstration for a museum exhibit. This demonstration illustrates the power of the focusing acoustic waves, and the principles learned by optimizing this demonstration can be applied to other real-world applications.

1.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
2.
B. E.
Anderson
,
M.
Griffa
,
C.
Larmat
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Time reversal
,”
Acoust. Today
4
(
1
),
5
16
(
2008
).
3.
B. E.
Anderson
,
M. C.
Remillieux
,
P.-Y.
Le Bas
, and
T. J.
Ulrich
, “
Time reversal techniques
,” in
Nonlinear Acoustic Techniques for Nondestructive Evaluation
, 1st ed., edited by
T.
Kundu
(
Springer and Acoustical Society of America
,
New York
,
2018
), Chap. 14, pp.
547
581
.
4.
A.
Parvulescu
and
C. S.
Clay
, “
Reproducibility of signal transmission in the ocean
,”
Radio Elec. Eng.
29
,
223
228
(
1965
).
5.
C. S.
Clay
and
B. E.
Anderson
, “
Matched signals: The beginnings of time reversal
,”
Proc. Mtgs. Acoust.
12
,
055001
(
2011
).
6.
M.
Tanter
,
J.-L.
Thomas
, and
M.
Fink
, “
Time reversal and the inverse filter
,”
J. Acoust. Soc. Am.
108
(
1
),
223
234
(
2000
).
7.
M.
Tanter
,
J. F.
Aubry
,
J.
Gerber
,
J.-L.
Thomas
, and
M.
Fink
, “
Optimal focusing by spatiotemporal filter. I. Basic principles
,”
J. Acoust. Soc. Am.
110
,
37
47
(
2001
).
8.
T.
Gallot
,
S.
Catheline
,
P.
Roux
, and
M.
Campillo
, “
A passive inverse filter for Green's function retrieval
,”
J. Acoust. Soc. Am.
131
,
EL21
EL27
(
2012
).
9.
B. E.
Anderson
,
J.
Douma
,
T. J.
Ulrich
, and
R.
Snieder
, “
Improving spatio-temporal focusing and source reconstruction through deconvolution
,”
Wave Motion
52
,
151
159
(
2015
).
10.
M.
Fink
, “
Time-reversal acoustics in biomedical engineering
,”
Annu. Rev. Biomed. Eng.
5
(
1
),
465
497
(
2003
).
11.
M.
Fink
, “
Time reversal and phase conjugation with acoustic waves: Industrial and medical applications
,”
Lasers Electro-Opt.
3
,
2334
2335
(
2005
).
12.
M. L.
Willardson
,
B. E.
Anderson
,
S. M.
Young
,
M. H.
Denison
,
B. D.
Patchett
, and
T.
Akal
, “
Time reversal focusing of high amplitude sound in a reverberation chamber
,”
J. Acoust. Soc. Am.
143
(
2
),
696
705
(
2018
).
13.
C. B.
Wallace
and
B. E.
Anderson
, “
High-amplitude time reversal focusing of airborne ultrasound to generate a focused nonlinear difference frequency
,”
J. Acoust. Soc. Am.
150
(
2
),
1411
1423
(
2021
).
14.
P.-Y.
Le Bas
,
M. C.
Remillieux
,
L.
Pieczonka
,
J. A.
Ten Cate
,
B. E.
Anderson
, and
T. J.
Ulrich
Damage imaging in a laminated composite plate using an air-coupled time reversal mirror
,”
Appl. Phys. Lett.
107
,
184102
(
2015
).
15.
M.
Farin
,
C.
Prada
, and
J.
de Rosny
, “
Selective remote excitation of complex structures using time reversal in audible frequency range
,”
J. Acoust. Soc. Am.
146
(
4
),
2510
2521
(
2019
).
16.
G. F.
Edelmann
,
H. C.
Song
,
S.
Kim
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
T.
Akal
, “
Underwater acoustic communications using time reversal
,”
IEEE J. Ocean. Eng.
30
(
4
),
852
864
(
2005
).
17.
G.
Zhang
,
J. M.
Hovem
,
D.
Hefeng
, and
L.
Liu
, “
Coherent underwater communication using passive time reversal over multipath channels
,”
Appl. Acoust.
72
(
7
),
412
419
(
2011
).
18.
C.
He
,
Q.
Zhang
, and
J.
Huang
, “
Passive time reversal communication with cyclic shift keying over underwater acoustic channels
,”
Appl. Acoust.
96
(
9
),
132
138
(
2015
).
19.
B. E.
Anderson
,
T. J.
Ulrich
,
P.-Y.
Le Bas
, and
J. A.
Ten Cate
, “
Three dimensional time reversal communications in elastic media
,”
J. Acoust. Soc. Am.
139
(
2
),
EL25
EL30
(
2016
).
20.
C.
Larmat
,
J.-P.
Montagner
,
M.
Fink
,
Y.
Capdeville
,
A.
Tourin
, and
E.
Clevede
, “
Time-reversal imaging of seismic sources and applications to the great Sumatra earthquake
,”
Geophys. Res. Lett.
33
(
19
),
L19312
, (
2006
).
21.
C.
Larmat
,
J.
Tromp
,
Q.
Liu
, and
J.-P.
Montagner
, “
Time-reversal location of glacial earthquakes
,”
J. Geophys. Res.
113
(
B9
),
B09314
, (
2008
).
22.
C.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Tremor source location using time-reversal: Selecting the appropriate imaging field
,”
Geophys. Res. Lett.
36
(
22
),
L22304
, (
2009
).
23.
C. S.
Larmat
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Time-reversal methods in geophysics
,”
Phys. Today
63
(
8
),
31
35
(
2010
).
24.
I.
Rakotoarisoa
,
J.
Fischer
,
V.
Valeau
,
D.
Marx
,
C.
Prax
, and
L.-E.
Brizzi
, “
Time-domain delay-and-sum beamforming for time-reversal detection of intermittent acoustic sources in flows
,”
J. Acoust. Soc. Am.
136
(
5
),
2675
2686
(
2014
).
25.
A.
Mimani
,
Z.
Prime
,
C. J.
Doolan
, and
P. R.
Medwell
, “
A sponge-layer damping technique for aeroacoustic time-reversal
,”
J. Sound Vib.
342
,
124
151
(
2015
).
26.
A.
Mimani
,
Z.
Prime
,
D. J.
Moreau
, and
C. J.
Doolan
, “
An experimental application of aeroacoustic time-reversal to the Aeolian tone
,”
J. Acoust. Soc. Am.
139
(
2
),
740
763
(
2016
).
27.
T. J.
Ulrich
,
P. A.
Johnson
, and
A.
Sutin
, “
Imaging nonlinear scatterers applying the time reversal mirror
,”
J. Acoust. Soc. Am.
119
,
1514
1518
(
2006
).
28.
T. J.
Ulrich
,
A. M.
Sutin
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Time reversal and nonlinear elastic wave spectroscopy TR NEWS techniques
,”
Int. J. Nonlin. Mech.
43
,
209
216
(
2008
).
29.
B. E.
Anderson
,
M.
Griffa
,
T. J.
Ulrich
,
P.-Y.
Le Bas
,
R. A.
Guyer
, and
P. A.
Johnson
, “
Crack localization and characterization in solid media using time reversal techniques
,” Am. Rock Mech. Assoc., presented at the 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, Utah, June
2010
.
30.
M.
Fink
, “
Time-reversed acoustics
,”
Sci. Am.
281
(
5
),
91
97
(
1999
).
31.
P. C.
de Mello
,
N.
Pérez
,
J. C.
Adamowski
, and
K.
Nishimoto
, “
Wave focalization in a wave tank by using time reversal technique
,”
Ocean Eng.
123
,
314
326
(
2016
).
32.
C.
Heaton
,
B. E.
Anderson
, and
S. M.
Young
, “
Time reversal focusing of elastic waves in plates for educational demonstration purposes
,”
J. Acoust. Soc. Am.
141
(
2
),
1084
1092
(
2017
).
33.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one-bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
(
9
),
6343
6352
(
1999
).
34.
G.
Montaldo
,
P.
Roux
,
A.
Derode
,
C.
Negreira
, and
M.
Fink
, “
Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide
,”
J. Acoust. Soc. Am.
110
(
6
),
2849
2857
(
2001
).
35.
B.
Van Damme
,
K.
Van Den Abeele
,
Y.
Li
, and
O.
Bou Matar
, “
Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept
,”
J. Appl. Phys.
109
,
104910
(
2011
).
36.
B. E.
Anderson
,
M.
Clemens
, and
M. L.
Willardson
, “
The effect of transducer directionality on time reversal focusing
,”
J. Acoust. Soc. Am.
142
(
1
),
EL95
El101
(
2017
).
37.
M. H.
Denison
and
B. E.
Anderson
, “
Time reversal acoustics applied to rooms of various reverberation times
,”
J. Acoust. Soc. Am.
144
(
6
),
3055
3066
(
2018
).
38.
F.
Fahy
and
P.
Gardonio
,
Sound and Structural Vibration, Radiation, Transmission and Response
(
Academic
,
Cambridge, MA
,
2007
), Vol. 26, pp.
185
195
.
39.
A.
Sutin
,
B.
Libbey
,
V.
Kurtenoks
,
D.
Fenneman
, and
A.
Sarvazyan
, “
Nonlinear detection of land mines using wide bandwidth time-reversal techniques
,”
Proc. SPIE
6217
,
398
409
(
2006
).
40.
F.
Ciampa
and
M.
Meo
, “
Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis
,”
J. Acoust. Soc. Am.
131
(
6
),
4316
4323
(
2012
).
41.
focusTerra, The Earth and Science Discovery Center of ETH Zurich
, available at https://focusterra.ethz.ch/en/ (Last viewed September 20,
2021
).
42.
foucsTerra, “
Waves, dive in!
,” available at https://waves.ethz.ch/en/ (Last viewed September 20, 2021).
43.
The
Brigham Young University video of the time reversal LEGO demonstration
, available at https://youtu.be/tCuIRNyXi6s (Last viewed September 20, 2021).
44.
The time reversal LEGO demonstration conducted in the Brigham Young University laboratory showing repeatability with the eddy current sensor
, available at https://youtu.be/xbbQZo-Us80 (Last viewed September 20, 2021).
45.
The wave propagation visualization
, the first time reversal LEGO demonstration video, and an optimized launch demonstration, available at https://youtu.be/emgzUa3U5bg (Last viewed September 20, 2021).
You do not currently have access to this content.