Part of the detrimental effect caused by a stationary noise on sound perception results from the masking of relevant amplitude modulations (AM) in the signal by random intrinsic envelope fluctuations arising from the filtering of noise by cochlear channels. This study capitalizes on this phenomenon to probe AM detection strategies for human listeners using a reverse correlation analysis. Eight normal-hearing listeners were asked to detect the presence of a 4-Hz sinusoidal AM target applied to a 1-kHz tone carrier using a yes-no task with 3000 trials/participant. All stimuli were embedded in a white-noise masker. A reverse-correlation analysis was then carried on the data to compute “psychophysical kernels” showing which aspects of the stimulus' temporal envelope influenced the listener's responses. These results were compared to data simulated with different implementations of a modulation-filterbank model. Psychophysical kernels revealed that human listeners were able to track the position of AM peaks in the target, similar to the models. However, they also showed a marked temporal decay and a consistent phase shift compared to the ideal template. In light of the simulated data, this was interpreted as an evidence for the presence of phase uncertainty in the processing of intrinsic envelope fluctuations.

1.
Ahumada
,
A. J.
, Jr.
(
1996
). “
Perceptual classification images from vernier acuity masked by noise
,” in
ECVP'96 Abstracts
.
2.
Ahumada
,
A. J.
, Jr.
, and
Lovell
,
J.
(
1971
). “
Stimulus features in signal detection
,”
J. Acoust. Soc. Am.
49
(
6B
),
1751
1756
.
3.
Ahumada
,
A. J.
, Jr.
,
Marken
,
R.
, and
Sandusky
,
A.
(
1975
). “
Time and frequency analyses of auditory signal detection
,”
J. Acoust. Soc. Am.
57
(
2
),
385
390
.
4.
Ardoint
,
M.
,
Mamassian
,
P.
, and
Lorenzi
,
C.
(
2007
). “
Internal representation of amplitude modulation revealed by reverse correlation
,” in
Abstract AR0 n 919, 30th ARO Midwinter Meeting
, February 10–15, Denver, CO.
5.
Berg
,
B. G.
(
1989
). “
Analysis of weights in multiple observation tasks
,”
J. Acoust. Soc. Am.
86
(
5
),
1743
1746
.
6.
Brown
,
A. D.
, and
Stecker
,
G. C.
(
2010
). “
Temporal weighting of interaural time and level differences in high-rate click trains
,”
J. Acoust. Soc. Am.
128
(
1
),
332
341
.
7.
Cabrera
,
L.
,
Varnet
,
L.
,
Buss
,
E.
,
Rosen
,
S.
, and
Lorenzi
,
C.
(
2019
). “
Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity
,”
J. Acoust. Soc. Am.
146
(
4
),
2415
2429
.
8.
Dau
,
T.
(
1999
).
Modeling Auditory Processing of Amplitude Modulation
(
BIS Verlag
,
Oldenburg
).
9.
Dau
,
T.
,
Kollmeier
,
B.
, and
Kohlrausch
,
A.
(
1997
). “
Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration
,”
J. Acoust. Soc. Am.
102
(
5
),
2906
2919
.
10.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996a
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. I. Model structure
,”
J. Acoust. Soc. Am.
99
(
6
),
3615
3622
.
11.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996b
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. II. Simulations and measurements
,”
J. Acoust. Soc. Am.
99
(
6
),
3623
3631
.
12.
Dau
,
T.
,
Verhey
,
J.
, and
Kohlrausch
,
A.
(
1999
). “
Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers
,”
J. Acoust. Soc. Am.
106
(
5
),
2752
2760
.
13.
Derleth
,
R. P.
, and
Dau
,
T.
(
2000
). “
On the role of envelope fluctuation processing in spectral masking
,”
J. Acoust. Soc. Am.
108
(
1
),
285
296
.
14.
Drullman
,
R.
(
1995
). “
Temporal envelope and fine structure cues for speech intelligibility
,”
J. Acoust. Soc. Am.
97
(
1
),
585
592
.
15.
Ewert
,
S. D.
, and
Dau
,
T.
(
2000
). “
Characterizing frequency selectivity for envelope fluctuations
,”
J. Acoust. Soc. Am.
108
(
3
),
1181
1196
.
16.
Ewert
,
S. D.
,
Verhey
,
J. L.
, and
Dau
,
T.
(
2002
). “
Spectro-temporal processing in the envelope-frequency domain
,”
J. Acoust. Soc. Am.
112
(
6
),
2921
2931
.
17.
Fischenich
,
A.
,
Hots
,
J.
,
Verhey
,
J.
, and
Oberfeld
,
D.
(
2021
). “
Temporal loudness weights are frequency specific
,”
Front. Psychol.
12
,
588571
.
18.
Gilkey
,
R. H.
, and
Robinson
,
D. E.
(
1986
). “
Models of auditory masking: A molecular psychophysical approach
,”
J. Acoust. Soc. Am.
79
(
5
),
1499
1510
.
19.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched-noise data
,”
Hear. Res.
47
(
1–2
),
103
138
.
20.
Green
,
D. M.
(
1964
). “
Consistency of auditory detection judgments
,”
Psychol. Rev.
71
(
5
),
392
407
.
21.
Hartmann
,
W. M.
(
2004
).
Signals, Sound, and Sensation
(
Springer Science & Business Media
,
New York
).
22.
Hilkhuysen
,
G.
, and
Macherey
,
O.
(
2014
). “
Optimizing pulse-spreading harmonic complexes to minimize intrinsic modulations after auditory filtering
,”
J. Acoust. Soc. Am.
136
(
3
),
1281
1294
.
23.
Hohmann
,
V.
(
2002
). “
Frequency analysis and synthesis using a Gammatone filterbank
,”
Acta Acust. Acust.
88
(
3
),
433
442
.
24.
Irino
,
T.
, and
Patterson
,
R. D.
(
1996
). “
Temporal asymmetry in the auditory system
,”
J. Acoust. Soc. Am.
99
(
4
),
2316
2331
.
25.
Joosten
,
E. R. M.
,
Shamma
,
S. A.
,
Lorenzi
,
C.
, and
Neri
,
P.
(
2016
). “
Dynamic Reweighting of Auditory Modulation Filters
,”
PLoS Comput. Biol.
12
(
7
),
e1005019
.
26.
Jørgensen
,
S.
, and
Dau
,
T.
(
2011
). “
Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing
,”
J. Acoust. Soc. Am.
130
(
3
),
1475
1487
.
27.
King
,
A.
,
Varnet
,
L.
, and
Lorenzi
,
C.
(
2019
). “
Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept
,”
J. Acoust. Soc. Am.
145
(
4
),
2277
2293
.
28.
Kohlrausch
,
A.
,
Fassel
,
R.
,
Heijden
,
M. V. D.
,
Kortekaas
,
R.
,
Par
,
S. V. D.
,
Oxenham
,
A. J.
, and
Püschel
,
D.
(
1997
). “
Detection of tones in low-noise noise: Further evidence for the role of envelope fluctuations
,”
Acustica
83
(
4
),
659
669
.
29.
Lawson
,
J. L.
, and
Uhlenbeck
,
G. E.
(
1950
).
Threshold Signals
(
Dover Publications
,
New York
).
30.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
(
2
),
467
477
.
31.
Lorenzi
,
C.
,
Simpson
,
M. I.
,
Millman
,
R. E.
,
Griffiths
,
T. D.
,
Woods
,
W. P.
,
Rees
,
A.
, and
Green
,
G. G.
(
2001
). “
Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers
,”
J. Acoust. Soc. Am.
110
(
5 Pt 1
),
2470
2478
.
32.
Majdak
,
P.
,
Hollomey
,
C.
, and
Baumgartner
,
R.
(
2021
). “
AMT 1.0: The toolbox for reproducible research in auditory modeling
,” https://www.amtoolbox.org/ (Last viewed 2/16/2022).
33.
Moore
,
B. C.
, and
Sek
,
A.
(
1994
). “
Effects of carrier frequency and background noise on the detection of mixed modulation
,”
J. Acoust. Soc. Am.
96
,
741
751
.
34.
Murray
,
R. F.
(
2011
). “
Classification images: A review
,”
J. Vision
11
(
5
),
1
25
.
35.
Noordhoek
,
I. M.
, and
Drullman
,
R.
(
1997
). “
Effect of reducing temporal intensity modulations on sentence intelligibility
,”
J. Acoust. Soc. Am.
101
(
1
),
498
502
.
36.
Osses Vecchi
,
A.
, and
Kohlrausch
,
A.
(
2021
). “
Perceptual similarity between piano notes: Simulations with a template-based perception model
,”
J. Acoust. Soc. Am.
149
(
5
),
3534
3552
.
37.
Ponsot
,
E.
,
Susini
,
P.
, and
Oberfeld
,
D.
(
2016
). “
Temporal weighting of loudness: Comparison between two different psychophysical tasks
,”
J. Acoust. Soc. Am.
139
,
406
417
.
38.
Ponsot
,
E.
,
Varnet
,
L.
,
Wallaert
,
N.
,
Daoud
,
E.
,
Shamma
,
S. A.
,
Lorenzi
,
C.
, and
Neri
,
P.
(
2021
). “
Mechanisms of spectrotemporal modulation detection for normal- and hearing-impaired listeners
,”
Trends Hear.
25
,
233121652097802
.
39.
Rice
,
S. O.
(
1944
). “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
23
(
3
),
282
332
.
40.
Richards
,
V. M.
,
Tisby
,
M. K.
,
Suzuki-Gill
,
E. N.
, and
Shen
,
Y.
(
2021
). “
Sub-optimal construction of an auditory profile from temporally distributed spectral information
,”
J. Acoust. Soc. Am.
149
(
3
),
1567
1578
.
41.
Schönfelder
,
V. H.
, and
Wichmann
,
F. A.
(
2013
). “
Identification of stimulus cues in narrow-band tone-in-noise detection using sparse observer models
,”
J. Acoust. Soc. Am.
134
(
1
),
447
463
.
42.
Shub
,
D. E.
, and
Richards
,
V. M.
(
2009
). “
Psychophysical spectro-temporal receptive fields in an auditory task
,”
Hear. Res.
251
(
1-2
),
1
9
.
43.
Stecker
,
G. C.
(
2014
). “
Temporal weighting functions for interaural time and level differences. IV. Effects of carrier frequency
,”
J. Acoust. Soc. Am.
136
(
6
),
3221
3232
.
44.
Stone
,
M. A.
,
Füllgrabe
,
C.
,
Mackinnon
,
R. C.
, and
Moore
,
B. C. J.
(
2011
). “
The importance for speech intelligibility of random fluctuations in ‘steady’ background noise
,”
J. Acoust. Soc. Am.
130
(
5
),
2874
2881
.
45.
Stone
,
M. A.
,
Füllgrabe
,
C.
, and
Moore
,
B. C. J.
(
2012
). “
Notionally steady background noise acts primarily as a modulation masker of speech
,”
J. Acoust. Soc. Am.
132
(
1
),
317
326
.
46.
Strickland
,
E. A.
, and
Viemeister
,
N. F.
(
1996
). “
Cues for discrimination of envelopes
,”
J. Acoust. Soc. Am.
99
(
6
),
3638
3646
.
47.
Varnet
,
L.
,
Knoblauch
,
K.
,
Meunier
,
F.
, and
Hoen
,
M.
(
2013
). “
Using auditory classification images for the identification of fine acoustic cues used in speech perception
,”
Front. Human Neurosci.
7
,
1
12
.
48.
Varnet
,
L.
,
Knoblauch
,
K.
,
Serniclaes
,
W.
,
Meunier
,
F.
, and
Hoen
,
M.
(
2015
). “
A psychophysical imaging method evidencing auditory cue extraction during speech perception: A group analysis of auditory classification images
,”
PLoS One
10
(
3
),
e0118009
.
49.
Vecchi
,
A.
,
Varnet
,
L.
,
Carney
,
L. H.
,
Dau
,
T.
,
Bruce
,
I. C.
,
Verhulst
,
S.
, and
Majdak
,
P.
(
2021
). “
A comparative study of eight human auditory models of monaural processing
,” arXiv:2107.01753.
50.
Venezia
,
J. H.
,
Hickok
,
G.
, and
Richards
,
V. M.
(
2016
). “
Auditory ‘bubbles’: Efficient classification of the spectrotemporal modulations essential for speech intelligibility
,”
J. Acoust. Soc. Am.
140
(
2
),
1072
1088
.
51.
Viemeister
,
N. F.
(
1977
). “
Temporal factors in audition: A systems analysis approach
,” in
Psychophysics and Physiology of Hearing
, edited by
E. F.
Evans
and
J. R.
Wilson
(
Academic
,
London
), pp.
419
427
.
52.
Wallaert
,
N.
,
Moore
,
B. C. J.
,
Ewert
,
S. D.
, and
Lorenzi
,
C.
(
2017
). “
Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation
,”
J. Acoust. Soc. Am.
141
(
2
),
971
980
.
53.
Wallaert
,
N.
,
Varnet
,
L.
,
Moore
,
B. C. J.
, and
Lorenzi
,
C.
(
2018
). “
Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation
,”
J. Acoust. Soc. Am.
144
(
2
),
720
733
.

Supplementary Material

You do not currently have access to this content.