In this paper, a numerical process is presented for predicting the response of vibrating structures excited by a non-homogeneous turbulent boundary layer. This one is based on the synthesis of different realizations of the random pressure fluctuations that can be introduced as loading of a vibroacoustic model. The vibratory response is finally deduced by averaging together the responses of the different loads. As a first approach, the pressure fluctuations of the non-homogeneous turbulent boundary layer can be generated separately for different sub-areas of the structure by using the uncorrelated wall plane waves technique and mean boundary layer parameters. An extension of this basic approach consists in taking into account the interaction between the sub-areas and a refinement of the sub-area decomposition. Wall pressure fluctuations related to a continuous evolution of the boundary layer can then be generated and introduced in the vibroacoustic model. The accuracy of the proposed approach is studied on a rectangular panel excited on one side by a growing fully turbulent boundary layer triggered at one edge of the plate. Comparisons with the spatial approach and the wavenumber approach using the sub-area decomposition technique are proposed. Interests of the proposed approach in terms of accuracy and computing times are discussed.

1.
Bonness
,
W. K.
,
Capone
,
D. E.
, and
Hambric
,
S. A.
(
2010
). “
Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow
,”
J. Sound Vib.
329
(
20
),
4166
4180
.
2.
Bull
,
M. K.
(
1996
). “
Wall-pressure fluctuations beneath turbulent boundary layers: Some reflections on forty years of research
,”
J. Sound Vib.
190
(
3
),
299
315
.
3.
Chase
,
D.
(
1980
). “
Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure
,”
J. Sound Vib.
70
(
1
),
29
67
.
4.
Ciappi
,
E.
,
De Rosa
,
S.
,
Franco
,
F.
,
Vitiello
,
P.
, and
Miozzi
,
M.
(
2016
). “
On the dynamic behavior of composite panels under turbulent boundary layer excitations
,”
J. Sound Vib.
364
,
77
109
.
5.
Ciappi
,
E.
, and
Magionesi
,
F.
(
2005
). “
Characteristics of the turbulent boundary layer pressure spectra for high-speed vessels
,”
J. Fluid Struct.
21
,
321
333
.
6.
Ciappi
,
E.
,
Magionesi
,
F.
,
De Rosa
,
S.
, and
Franco
,
F.
(
2009
). “
Hydrodynamic and hydroelastic analyses of a plate excited by the turbulent boundary layer
,”
J. Fluid Struct.
25
,
321
342
.
7.
Ciappi
,
E.
,
Magionesi
,
F.
,
De Rosa
,
S.
, and
Franco
,
F.
(
2012
). “
Analysis of the scaling laws for the turbulence driven panel responses
,”
J. Fluid Struct.
32
,
90
103
.
8.
Cohen
,
E.
, and
Gloerfelt
,
X.
(
2018
). “
Influence of pressure gradients on wall pressure beneath a turbulent boundary layer
,”
J. Fluid Mech.
838
,
715
758
.
9.
Corcos
,
G.
(
1964
). “
The structure of the turbulent pressure field in boundary-layer flows
,”
J. Fluid Mech.
18
(
3
),
353
378
.
10.
De Rosa
,
S.
, and
Franco
,
F.
(
2008
). “
Exact and numerical responses of a plate under a turbulent boundary layer excitation
,”
J. Fluid Struct.
24
,
212
230
.
11.
De Rosa
,
S.
,
Franco
,
F.
, and
Ciappi
,
E.
(
2013
). “
PEDEM: A new method for the analysis of the stochastic response
,”
Aerotecnica Missili Spazio
92
(
3-4
),
87
93
.
12.
De Rosa
,
S.
,
Franco
,
F.
, and
Ciappi
,
E.
(
2015
). “
A simplified method for the analysis of the stochastic response in discrete coordinates
,”
J. Sound Vib.
339
,
359
375
.
13.
Franco
,
F.
,
De Rosa
,
S.
, and
Ciappi
,
E.
(
2013
). “
Numerical approximations of the predictive responses of plates under stochastic and convective loads
,”
J. Fluid Struct.
42
,
296
312
.
14.
Goody
,
M.
(
2004
). “
Empirical spectra model of surface pressure fluctuations
,”
Am. Inst. Aeronautics Astronautics J.
42
(
9
),
1788
1794
.
15.
Graham
,
W.
(
1997
). “
A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures
,”
J. Sound Vib.
206
(
4
),
541
565
.
16.
Guillon
,
C.
,
Maxit
,
L.
, and
Redon
,
E.
(
2021
). “
Modeling vibrating panels excited by a non-homogeneous turbulent boundary layer
,”
J. Fluid Struct.
116
,
103378
.
17.
Hambric
,
S. A.
,
Hwang
,
Y.
, and
Bonness
,
W. K.
(
2004
). “
Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow
,”
J. Fluid Struct.
19
,
93
110
.
18.
Hong
,
C.
, and
Shin
,
K.-K.
(
2010
). “
Modeling of wall pressure fluctuations for finite element structural analysis
,”
J. Sound Vib.
329
,
1673
1685
.
19.
Hwang
,
Y.
,
Bonness
,
W. K.
, and
Stephen Hambric
,
S. A.
(
2009
). “
Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra
,”
J. Sound Vib.
319
,
199
217
.
20.
Karimi
,
M.
,
Croaker
,
P.
,
Maxit
,
L.
,
Robin
,
O.
,
Skvortsov
,
A.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
(
2020a
). “
A hybrid numerical approach to predict the vibrational responses of panels excited by a turbulent boundary layer
,”
J. Fluid Struct.
92
,
102814
.
21.
Karimi
,
M.
,
Maxit
,
L.
,
Meyer
,
V.
,
Marburg
,
S.
, and
Kirby
,
R.
(
2020b
). “
Non-negative intensity for planar structures under stochastic excitation
,”
J. Sound Vib.
488
,
115652
.
22.
Lanczos
,
C.
(
1950
). “
An iteration method for the solution of the eigenvalue problem of linear differential and integral operators
,”
J. Res. Nat. Bur. Stand.
45
(
4
),
255
282
.
23.
Lin
,
J.
,
Zhang
,
Y.
, and
Zhao
,
Y.
(
2011
). “
Pseudo excitation method and some recent developments
,”
Procedia Eng.
14
,
2453
2458
.
24.
Marchetto
,
C.
,
Maxit
,
L.
,
Robin
,
O.
, and
Berry
,
A.
(
2018
). “
Experimental prediction of the vibration response of panels under a turbulent boundary layer excitation from sensitivity functions
,”
J. Acoust. Soc. Am.
143
(
5
),
2954
2964
.
25.
Maury
,
C.
,
Gardonoio
,
P.
, and
Elliott
,
S.
(
2002
). “
A wavenumber approach to modelling the response of a randomly excited panel, part i: General theory
,”
J. Sound Vib.
252
(
1
),
83
113
.
26.
Maxit
,
L.
(
2016
). “
Simulation of the pressure field beneath a turbulent boundary layer using realizations of uncorrelated plane waves
,”
J. Acoust. Soc. Am.
140
(
2
),
1268
1285
.
27.
Maxit
,
L.
,
Berton
,
M.
,
Audoly
,
C.
, and
Juvé
,
D.
(
2015
). “
Discussion about different methods for introducing the turbulent boundary layer excitation in vibroacoustics models
,” in
Flinovia - Flow Induced Noise and Vibration Issues and Aspects
(
Springer
,
Cham, Switzerland
), pp.
249
278
.
28.
Maxit
,
L.
, and
Denis
,
V.
(
2013
). “
Prediction of flow induced sound and vibration of periodically stiffened plates
,”
J. Acoust. Soc. Am.
133
(
1
),
146
160
.
29.
Mellen
,
R. H.
(
1990
). “
On modeling convective turbulence
,”
J. Acoust. Soc. Am.
88
(
6
),
2891
2893
.
30.
Rozenberg
,
Y.
,
Robert
,
G.
, and
Moreau
,
S.
(
2012
). “
Wall-pressure spectral model including the adverse pressure gradient effects
,”
Am. Inst. Aeronautics Astronautics J.
50
(
10
),
2168
2179
.
31.
Salze
,
E.
,
Bailly
,
C.
,
Marsden
,
O.
,
Jondeau
,
E.
, and
Juvé
,
D.
(
2014
). “
An experimental characterization of wall pressure wavevector-frequency spectra in the presence of pressure gradients
,” in
20th AIAA/CEAS Aeroacoustics Conference.
Atlanta, GA (June 16–20, 2014), p.
2909
32.
Sanders
,
M.
(
2014
). “
The boundary layer over a flat plate
,” Bachelor thesis,
University of Twente
, Enschede, The Netherlands.
33.
Schilchting
,
H.
, and
Gersten
,
K.
(
2017
).
Boundary-Layer Theory
, 9th ed. (
Springer
,
Cham, Switzerland
).
34.
Strawderman
,
W. A.
(
1969
). “
Turbulence-induced plate vibrations: An evaluation of finite- and infinite-plate models
,”
J. Acoust. Soc. Am.
46
(
5
),
1294
1307
.
35.
Xu
,
Y.
,
Zhang
,
W.
,
Ko
,
J.
, and
Lin
,
J.
(
1999
). “
Pseudo-excitation method for vibration analysis of wind-excited structures
,”
J. Wind Eng. Ind. Aerodyn.
83
,
443
454
.
You do not currently have access to this content.