The influence of the ground and atmosphere on sound generation and propagation from wind turbines creates uncertainty in sound level estimations. Realistic simulations of wind turbine noise thus require quantifying the overall uncertainty on sound pressure levels induced by environmental phenomena. This study proposes a method of uncertainty quantification using a quasi-Monte Carlo method of sampling influential input data (i.e., environmental parameters) to feed an Amiet emission model coupled with a Parabolic Equation propagation model. This method allows for calculation of the probability distribution of the output data (i.e., sound pressure levels). As this stochastic uncertainty quantification method requires a large number of simulations, a metamodel of the global (emission-propagation) wind turbine noise model was built using the kriging interpolation technique to drastically reduce calculation time. When properly employed, the metamodeling technique can quantify statistics and uncertainties in sound pressure levels at locations downwind from wind turbines. This information provides better knowledge of sound pressure variability and will help to better control the quality of wind turbine noise prediction for inhomogeneous outdoor environments.

1.
Amiet
,
R. K.
(
1975
). “
Acoustic radiation from an airfoil in a turbulent stream
,”
J. Sound Vib.
41
(
4
),
407
420
.
2.
Amiet
,
R. K.
(
1976
). “
Noise due to turbulent flow past a trailing edge
,”
J. Sound Vib.
47
(
3
),
387
393
.
3.
Attal
,
E.
(
2016
). “
Caractérisation et optimisation d'assemblages d'éléments de murs végétalisés par méthodes acoustique et vibratoire
” (“Characterization and optimization of assemblies of green walls elements by acoustic and vibration methods”), Ph.D. thesis,
University of Lille
,
Lille, France
.
4.
Attal
,
E.
,
Côté
,
N.
,
Shimizu
,
T.
, and
Dubus
,
B.
(
2019
). “
Sound absorption by green walls at normal incidence: Physical analysis and optimization
,”
Acta Acust. united Ac.
105
(
2
),
301
312
.
5.
Attenborough
,
K.
,
Li
,
K. M.
, and
Horoshenko
,
K.
(
2006
).
Predicting Outdoor Sound
(
CRC Press
,
Boca Raton, FL
).
6.
Barlas
,
E.
,
Zhu
,
W. J.
,
Shen
,
W. Z.
,
Dag
,
K. O.
, and
Moriarty
,
P.
(
2017
). “
Consistent modelling of wind turbine noise propagation from source to receiver
,”
J. Acoust. Soc. Am.
142
(
5
),
3297
3310
.
7.
Bass
,
F. G.
, and
Fuks
,
I. M.
(
1979
).
Wave Scattering from Statistically Rough Surfaces: International Series in Natural Philosophy
(
Elsevier
,
Amsterdam
).
8.
Bertagnolio
,
F.
,
Madsen
,
H. A.
, and
Fischer
,
A.
(
2017
). “
A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements
,”
Wind Energy
20
(
8
),
1331
1348
.
9.
Blaes
,
X.
, and
Defourny
,
P.
(
2008
). “
Characterizing bidimensional roughness of agricultural soil surfaces for SAR modeling
,”
IEEE Trans. Geosci. Remote Sens.
46
(
12
),
4050
4061
.
10.
Borgeaud
,
M.
, and
Bellini
,
A.
(
1998
). “
A database for electromagnetic scattering studies of bare soil surfaces
,” in
Proceedings of the IGARSS '98. Sensing and Managing the Environment
,
July 6–10
,
Seattle, WA
, pp.
1197
1199
.
11.
Bourlier
,
C.
,
Pinel
,
N.
, and
Kubické
,
G.
(
2013
).
Method of Moments for 2D Scattering Problems: Basic Concepts and Applications
(
John Wiley & Sons
,
New York
).
12.
Bowdler
,
D.
, and
Leventhall
,
H.
(
2012
).
Wind Turbine Noise
(
Multi-Science Pub
,
New York
).
13.
Brelet
,
Y.
, and
Bourlier
,
C.
(
2008
). “
Bistatic Scattering from a Sea-Like One-Dimensional Rough Surface with the Perturbation Theory in HF-VHF Band
,” in
Proceedings of IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium
,
July 6–11
,
Boston, MA
, pp. IV
– 1137
IV – 1140
.
14.
Brutsaert
,
W.
(
1982
).
Evaporation into the Atmosphere: Theory, History and Applications
(
Springer
,
Amsterdam, the Netherlands
).
15.
Buck
,
S.
,
Oerlemans
,
S.
, and
Palo
,
S.
(
2016
). “
Experimental characterization of turbulent inflow noise on a full-scale wind turbine
,”
J. Sound Vib.
385
,
219
238
.
16.
Carpinello
,
S.
,
L'Hermite
,
P.
,
Bérengier
,
M.
, and
Licitra
,
G.
(
2004
). “
A new method to measure the acoustic surface impedance outdoors
,”
Radiat. Protection Dosimetry
111
(
4
),
363
367
.
17.
Cheinet
,
S.
,
Cosnefroy
,
M.
,
Königstein
,
F.
,
Rickert
,
W.
,
Christoph
,
M.
,
Collier
,
S. L.
,
Dagallier
,
A.
,
Ehrhardt
,
L.
,
Ostashev
,
V. E.
,
Stefanovic
,
A.
,
Wessling
,
T.
, and
Wilson
,
D. K.
(
2018
). “
An experimental study of the atmospheric-driven variability of impulse sounds
,”
J. Acoust. Soc. Am.
144
(
2
),
822
840
.
18.
Cotté
,
B.
(
2019
). “
Extended source models for wind turbine noise propagation
,”
J. Acoust. Soc. Am.
145
(
3
),
1363
1371
.
19.
Daigle
,
G. A.
(
1979
). “
Effects of atmospheric turbulence on the interference of sound waves above a finite impedance boundary
,”
J. Acoust. Soc. Am.
65
(
1
),
45
49
.
20.
Davidson
,
M. W. J.
,
Toan
,
T. L.
,
Mattia
,
F.
,
Satalino
,
G.
,
Manninen
,
T.
, and
Borgeaud
,
M.
(
2000
). “
On the characterization of agricultural soil roughness for radar remote sensing studies
,”
IEEE Trans. Geosci. Remote Sens.
38
(
2
),
630
640
.
21.
Ecotière
,
D.
,
Glé
,
P.
,
Gauvreau
,
B.
,
Boittin
,
R.
,
Lefèvre
,
H.
, and
Lunain
,
D.
(
2015
). “
Uncertainty of an in situ method for measuring ground acoustic impedance
,” in
Proceedings of Internoise 2015
,
August 9–12
,
San Francisco, CA
.
22.
Ecotière
,
D.
,
Kayser
,
B.
,
Gauvreau
,
B.
,
Lebourdat
,
C.
,
Bruneau
,
F.
,
Guillaume
,
G.
,
Lefèvre
,
H.
,
Petit
,
A.
,
Demizieux
,
P.
,
Gary
,
V.
, and
Durieux
,
J.-P.
(
2018
).
Emission et Propagation du Bruit Des Éoliennes: constitution D'une Base de Données Exp érimentale de Référence
(
14ème Congrès Français d'Acoustique
,
Le Havre, France
).
23.
Embleton
,
T. F. W.
,
Piercy
,
J. E.
, and
Daigle
,
G. A.
(
1983
). “
Effective flow resistivity of ground surfaces determined by acoustical measurements
,”
J. Acoust. Soc. Am.
74
(
4
),
1239
1244
.
24.
Foken
,
T.
(
2008
).
Micrometeorology
(
Springer
,
New York
).
25.
Gauvreau
,
B.
(
2013
). “
Long-term experimental database for environmental acoustics
,”
Appl. Acoust.
74
(
7
),
958
967
.
26.
Heimann
,
D.
,
Englberger
,
A.
, and
Schady
,
A.
(
2018
). “
Sound propagation through the wake flow of a hilltop wind turbine-A numerical study
,”
Wind Energy
21
(
8
),
650
662
.
27.
Heimann
,
D.
, and
Salomons
,
E. M.
(
2004
). “
Testing meteorological classifications for the prediction of long-term average sound levels
,”
Appl. Acoust.
65
(
10
),
925
950
.
28.
ISO
(
1993
). ISO9613-1:1993,
Acoustics—Sound Attenuation in Free Field—Part 1: Atmospheric Absorption Calculation
(
ISO
,
Geneva, Switzerland
).
29.
Johnson
,
M. E.
,
Moore
,
L. M.
, and
Ylvisaker
,
D.
(
1990
). “
Minimax and maximin distance designs
,”
J. Stat. Plan. Infer.
26
(
2
),
131
148
.
30.
Jolliffe
,
I. T.
(
1986
). “
Principal components in regression analysis
,” in
Principal Component Analysis
, edited by
I. T.
Jolliffe
(
Springer
,
New York
), pp.
129
155
.
31.
Kayser
,
B.
(
2020a
). “
Estimation des incertitudes de modélisation du bruit des éoliennes
,” Ph.D. thesis,
Université Le Mans
,
Le Mans, France
.
32.
Kayser
,
B.
(
2020b
). “
Uncertainty quantification in wind turbine noise modelling
,” Ph.D. thesis,
Université Le Mans
,
Le Mans, France
.
33.
Kayser
,
B.
,
Cotté
,
B.
,
Ecotière
,
D.
, and
Gauvreau
,
B.
(
2020
). “
Environmental parameters sensitivity analysis for the modeling of wind turbine noise in downwind conditions
,”
J. Acoust. Soc. Am.
148
(
6
),
3623
3632
.
34.
Kayser
,
B.
,
Gauvreau
,
B.
, and
Ecotière
,
D.
(
2019
). “
Sensitivity analysis of a parabolic equation model to ground impedance and surface roughness for wind turbine noise
,”
J. Acoust. Soc. Am.
146
(
5
),
3222
3231
.
35.
Kayser
,
B.
,
Gauvreau
,
B.
,
Ecotière
,
D.
, and
Le Bourdat
,
C.
(
2018
). “
A new experimental database for wind turbine noise propagation in an outdoor inhomogeneous medium
,” in
Proceedings of the 17th International Symposium on Long Range Sound Propagation
,
June 12–13
,
Lyon, France
.
36.
Kirby
,
R.
(
2014
). “
On the modification of Delany and Bazley fomulae
,”
Appl. Acoust.
86
,
47
49
.
37.
Koehler
,
J. R.
, and
Owen
,
A.
(
1996
). “
Computer experiments
,” in
Design and Analysis of Experiments
(
Elsevier
,
Amsterdam
), pp.
261
330
.
38.
Lee
,
S.
,
Lee
,
D.
, and
Honhoff
,
S.
(
2016
). “
Prediction of far-field wind turbine noise propagation with parabolic equation
,”
J. Acoust. Soc. Am.
140
(
2
),
767
778
.
39.
Leroy
,
O.
,
Gauvreau
,
B.
,
Junker
,
F.
,
De Rocquigny
,
E.
, and
Bérengier
,
M.
(
2010
). “
Uncertainty assessment for outdoor sound propagation
,” in
Proceedings of the 20th International Congress on Acoustics (ICA)
,
August 23–27
,
Sydney, Australia
.
40.
Lesieur
,
A.
,
Aumond
,
P.
,
Mallet
,
V.
, and
Can
,
A.
(
2020
). “
Meta-modeling for urban noise mapping
,”
J. Acoust. Soc. Am.
148
(
6
),
3671
3681
.
41.
Mallet
,
V.
,
Tilloy
,
A.
,
Poulet
,
D.
,
Girard
,
S.
, and
Brocheton
,
F.
(
2018
). “
Meta-modeling of ADMS-Urban by dimension reduction and emulation
,”
Atmos. Environ.
184
,
37
46
.
42.
Matheron
,
G.
(
1965
).
Les Variables Régionalisées et Leur Estimation: une Application de la Théorie Des Fonctions Aléatoires Aux Sciences de la Nature
(
Masson et CIE
,
Renens, Switzerland
).
43.
McBride
,
S.
, and
Burdisso
,
R.
(
2017
). “
A comprehensive Hamiltonian ray tracing technique for wind turbine noise propagation under arbitrary weather conditions
,” in
Seventh International Meeting on Wind Turbine Noise
,
May 2–5
,
Rotterdam, the Netherlands
, pp.
1
12
.
44.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
(
1979
). “
Comparison of three methods for selecting values of input variables in the analysis of output from a computer code
,”
Technometrics
21
(
2
),
239
245
.
45.
Miki
,
Y.
(
1990
). “
Acoustical properties of porous materials-modifications of Delany-Bazley models
,”
J. Acoust. Soc. Jpn. E
11
(
1
),
19
24
.
46.
Møller
,
H.
, and
Pedersen
,
C. S.
(
2011
). “
Low-frequency noise from large wind turbines
,”
J. Acoust. Soc. Am.
129
(
6
),
3727
3744
.
47.
Monin
,
A.
, and
Obukhov
,
A.
(
1954
). “
Basic laws of turbulent mixing in the surface layer of the atmosphere
,”
Contrib. Geophys. Inst. Acad. Sci. USSR
151
, pp.
163
187
.
48.
Nicolas
,
J.
, and
Berry
,
J. L.
(
1984
). “
Propagation du son, et effet de sol
,”
Revue d'Acoustique
71
,
191
200
.
49.
Oerlemans
,
S.
, and
Schepers
,
J. G.
(
2009
). “
Prediction of wind turbine noise and validation against experiment
,”
Int. J. Aeroacoust.
8
(
6
),
555
584
.
50.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
(
CRC Press
,
Boca Raton, FL
).
51.
Pettit
,
C. L.
, and
Wilson
,
D. K.
(
2007
). “
Proper orthogonal decomposition and cluster weighted modeling for sensitivity analysis of sound propagation in the atmospheric surface layer
,”
J. Acoust. Soc. Am.
122
(
3
),
1374
1390
.
52.
R Core Team
(
2013
). “
R: A Language and Environment for Statistical Computing
,” http://www.R-project.org/ (01/14/2022).
53.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
(
2005
).
Gaussian Processes for Machine Learning
(
MIT Press
,
Cambridge, MA
), pp.
69
106
.
54.
Renterghem
,
T. V.
, and
Botteldooren
,
D.
(
2018
). “
Variability due to short-distance favorable sound propagation and its consequences for immission assessment
,”
J. Acoust. Soc. Am.
143
(
6
),
3406
3417
.
55.
Roger
,
M.
, and
Moreau
,
S.
(
2010
). “
Extensions and limitations of analytical airfoil broadband noise models
,”
Int. J. Aeroacoust.
9
(
3
),
273
305
.
56.
Roustant
,
O.
,
Ginsbourger
,
D.
, and
Deville
,
Y.
(
2012
). “
DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization
,” https://hal.archives-ouvertes.fr/hal-00495766 (01/14/2022).
57.
Salomons
,
E. M.
(
2001
).
Computational Atmospheric Acoustics
(
Kluwer Academic
,
Amsterdam, the Netherlands
).
58.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
(
2008
).
Global Sensitivity Analysis: The Primer
(
John Wiley & Sons
,
New York
).
59.
Sobol
,
I.
(
1967
). “
On the distribution of points in a cube and the approximate evaluation of integrals
,”
USSR Comput. Math. Math. Phys.
7
(
4
),
86
112
.
60.
Tian
,
Y.
(
2016
). “
Modeling of wind turbine noise sources and propagation in the atmosphere
,” Ph.D. thesis,
Paris-Saclay
,
Paris, France
.
61.
Tian
,
Y.
, and
Cotté
,
B.
(
2016
). “
Wind turbine noise modeling based on Amiet's theory: Effects of wind shear and atmospheric turbulence
,”
Acta Acust. united Ac.
102
(
4
),
626
639
.
62.
Wilson
,
D. K.
(
2003
). “
The sound-speed gradient and refraction in the near-ground atmosphere
,”
J. Acoust. Soc. Am.
113
(
2
),
750
757
.
63.
Wilson
,
D. K.
,
Pettit
,
C. L.
,
Ostashev
,
V. E.
, and
Vecherin
,
S. N.
(
2014
). “
Description and quantification of uncertainty in outdoor sound propagation calculations
,”
J. Acoust. Soc. Am.
136
(
3
),
1013
1028
.
64.
Zhu
,
W. J.
,
Heilskov
,
N.
,
Shen
,
W. Z.
, and
Sørensen
,
J. N.
(
2005
). “
Modeling of aerodynamically generated noise from wind turbines
,”
J. Sol. Energy Eng.
127
(
4
),
517
528
.
65.
Zouboff
,
V.
,
Brunet
,
Y.
,
Bérengier
,
M.
, and
Sechet
,
E.
(
1994
). “
A qualitative approach of atmospheric effects on long range sound propagation
,” in
Proceeding of the 6th International Symposium on Long Range Sound Propagation
,
June 12–14
,
Ottawa, Canada
.
You do not currently have access to this content.