Wind-induced noise recorded with a compact microphone array can be exploited to infer the mean velocity of the free-field airflow. In this work, a model-based method to estimate the wind flow speed and direction is proposed that uses spectro-spatial correlations of closely spaced microphone signals. As shown in a recent work by the present authors, the normalized cross-power spectral density of flow-induced noise measured with closely spaced microphones, also referred to as the spatial coherence, can be approximated by a semi-empirical model, named the Corcos model. Due to the dependency of the Corcos model on the airflow velocity, the measured spatial coherence provides information on the sought quantity. Speed and direction can be resolved by fitting the measured spatial coherence to the analytical Corcos model in the least squares sense. The accuracy of the proposed method is investigated across a range of wind speed between 0.5 and 12 ms−1 and all directions, using observation lengths from 5 s to 1 h. The audio samples under test were recorded indoors and outdoors and labeled by an ultrasonic anemometer. The evaluation results show that the accuracy can be increased by reducing the time resolution.

1.
Bass
,
H. E.
,
Raspet
,
R.
, and
Messer
,
J. O.
(
1995
). “
Experimental determination of wind speed and direction using a three microphone array
,”
J. Acoust. Soc. Am.
97
(
1
),
695
696
.
2.
Blake
,
W. K.
(
2017
).
Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions
(
Academic
,
New York
).
4.
Busch
,
N. E.
, and
Kristensen
,
L.
(
1976
). “
Cup anemometer overspeeding
,”
J. Appl. Meteorol.
15
(
12
),
1328
1332
.
5.
Camussi
,
R.
(
2013
).
Noise Sources in Turbulent Shear Flows: Fundamentals and Applications
(
Springer Science & Business Media
,
New York
), Vol.
545
.
6.
Cauchy
,
P.
,
Heywood
,
K. J.
,
Merchant
,
N. D.
,
Queste
,
B. Y.
, and
Testor
,
P.
(
2018
). “
Wind speed measured from underwater gliders using passive acoustics
,”
J. Atmos. Oceanic Technol.
35
(
12
),
2305
2321
.
7.
Cazau
,
D.
,
Bonnel
,
J.
, and
Baumgartner
,
M.
(
2019
). “
Wind speed estimation using acoustic underwater glider in a near-shore marine environment
,”
IEEE Geosci. Remote Sens. Lett
57
(
4
),
2097
2106
.
8.
Chase
,
D. M.
(
1980
). “
Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure
,”
J. Sound Vib.
70
(
1
),
29
67
.
9.
Choi
,
H.
, and
Moin
,
P.
(
1990
). “
On the space-time characteristics of wall-pressure fluctuations
,”
Phys. Fluids A: Fluid Dyn.
2
(
8
),
1450
1460
.
10.
Corcos
,
G.
(
1964
). “
The structure of the turbulent pressure field in boundary-layer flows
,”
J. Fluid Mech.
18
(
3
),
353
378
.
12.
Drutowski
,
K. G.
,
Cronin
,
D. J.
, and
Hongerholt
,
D. D.
(
2007
). “
System for and method of acoustic and through skin air data measurement
,” U.S. patent 7,155,969.
13.
Efimtsov
,
B.
(
1982
). “
Characteristics of the field of turbulent wall pressure-fluctuations at large reynolds-numbers
,”
Sov. Phys. Acoust. USSR
28
(
4
),
289
292
.
15.
Godin
,
O. A.
,
Irisov
,
V. G.
, and
Charnotskii
,
M. I.
(
2014
). “
Passive acoustic measurements of wind velocity and sound speed in air
,”
J. Acoust. Soc. Am.
135
(
2
),
EL68
EL74
.
16.
Mellen
,
R. H.
(
1990
). “
On modeling convective turbulence
,”
J. Acoust. Soc. Am.
88
(
6
),
2891
2893
.
17.
MeterEnvironment
(
2019
). “
ATMOS22 Ultrasonic Anemometer
,” https://www.metergroup.com/environment/products/atmos-22-sonic-anemometer/ (Last viewed October 8, 2021).
18.
Mirabilii
,
D.
, and
Habets
,
E. A. P.
(
2018
). “
Simulating multi-channel wind noise based on Corcos model
,” in
Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC)
.
19.
Nelke
,
C. M.
, and
Vary
,
P.
(
2014
). “
Measurement, analysis and simulation of wind noise signals for mobile communication devices
,” in
Proceedings of the International Workshop on Acoustic Echo and Noise Control (IWAENC)
.
20.
Palumbo
,
D.
(
2013
). “
The variance of convection velocity in the turbulent boundary layer and its effect on coherence length
,”
J. Sound Vib.
332
(
15
),
3692
3705
.
21.
Pensieri
,
S.
,
Bozzano
,
R.
,
Nystuen
,
J. A.
,
Anagnostou
,
E. N.
,
Anagnostou
,
M. N.
, and
Bechini
,
R.
(
2015
). “
Underwater acoustic measurements to estimate wind and rainfall in the Mediterranean sea
,”
Adv. Meteorol.
2015
,
612512
.
22.
Perez
,
I.
,
Garcia
,
M.
,
Sanchez
,
M.
, and
De Torre
,
B.
(
2004
). “
Analysis of height variations of SODAR-derived wind speeds in northern Spain
,”
J. Wind Eng. Ind. Aerodyn.
92
(
10
),
875
894
.
23.
Pérez
,
I. A.
,
Sánchez
,
M. L.
, and
García
,
M. Á.
(
2007
). “
Weibull wind speed distribution: Numerical considerations and use with sodar data
,”
J. Geophys. Res.: Atmos.
112
(
D20
),
D20112
, .
24.
Pindado
,
S.
,
Vega
,
E.
,
Martínez
,
A.
,
Meseguer
,
E.
,
Franchini
,
S.
, and
Sarasola
,
I. P.
(
2011
). “
Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine annual energy production (AEP) calculations
,”
Wind Energy
14
(
1
),
119
132
.
25.
Şahin
,
A. D.
(
2004
). “
Progress and recent trends in wind energy
,”
Prog. Energy Combust. Sci.
30
(
5
),
501
543
.
26.
Smol'Yakov
,
A.
,
Tkachenko
,
V.
, and
Wood
,
J.
(
1991
). “
Model of a field of pseudosonic turbulent wall pressures and experimental data
,”
Sov. Phys. Acoust.
37
(
6
),
627
631
.
27.
Vecherin
,
S. N.
,
Ostashev
,
V.
,
Wilson
,
D. K.
, and
Grachev
,
A.
(
2011
). “
Utilization of an acoustic tomography array as a large sonic anemometer/thermometer
,”
J. Acoust. Soc. Am.
14
(
1
),
045003
.
28.
Welch
,
P.
(
1967
). “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
.
29.
Westermann
,
D.
(
1996
). “
Overspeeding measurements of cup anemometers compared to a simple numerical model
,” Deutsches Windenergie-Institut gemeinnutzige GmbH.
30.
Williams
,
J. F.
(
1982
). “
Boundary-layer pressures and the Corcos model: A development to incorporate low-wavenumber constraints
,”
J. Fluid Mech.
125
,
9
25
.
32.
Wilson
,
D. K.
, and
White
,
M. J.
(
2010
). “
Discrimination of wind noise and sound waves by their contrasting spatial and temporal properties
,”
Acta Acust. Acust.
96
(
6
),
991
1002
.
33.
Xiao
,
P.
,
Yang
,
K.-d.
, and
Lei
,
Z-x.
(
2017
). “
Sequential filtering for surface wind speed estimation from ambient noise measurement
,”
China Ocean Eng.
31
(
1
),
74
78
.
You do not currently have access to this content.