Poor laryngeal muscle coordination that results in abnormal glottal posturing is believed to be a primary etiologic factor in common voice disorders such as non-phonotraumatic vocal hyperfunction. Abnormal activity of antagonistic laryngeal muscles is hypothesized to play a key role in the alteration of normal vocal fold biomechanics that results in the dysphonia associated with such disorders. Current low-order models of the vocal folds are unsatisfactory to test this hypothesis since they do not capture the co-contraction of antagonist laryngeal muscle pairs. To address this limitation, a self-sustained triangular body-cover model with full intrinsic muscle control is introduced. The proposed scheme shows good agreement with prior studies using finite element models, excised larynges, and clinical studies in sustained and time-varying vocal gestures. Simulations of vocal fold posturing obtained with distinct antagonistic muscle activation yield clear differences in kinematic, aerodynamic, and acoustic measures. The proposed tool is deemed sufficiently accurate and flexible for future comprehensive investigations of non-phonotraumatic vocal hyperfunction and other laryngeal motor control disorders.

1.
Alzamendi
,
G. A.
,
Manríquez
,
R.
,
Hadwin
,
P. J.
,
Deng
,
J. J.
,
Peterson
,
S. D.
,
Erath
,
B. D.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
, and
Zañartu
,
M.
(
2020
). “
Bayesian estimation of vocal function measures using laryngeal high-speed videoendoscopy and glottal airflow estimates: An in vivo case study
,”
J. Acoust. Soc. Am.
147
(
5
),
EL434
EL439
.
2.
Birkholz
,
P.
,
Kröger
,
B. J.
, and
Neuschaefer-Rube
,
C.
(
2011a
). “
Articulatory synthesis of words in six voice qualities using a modified two-mass model of the vocal folds
,” in
First International Workshop on Performative Speech and Singing Synthesis
, p3s-2011, March 14–15,
Vancouver, Canada
.
3.
Birkholz
,
P.
,
Kröger
,
B. J.
, and
Neuschaefer-Rube
,
C.
(
2011b
). “
Synthesis of breathy, normal, and pressed phonation using a two-mass model with a triangular glottis
,” in
Proceedings of Interspeech 2011: 12th Annual Conference of the International Speech Communication Association
,
August 27–31
,
Florence, Italy
, pp.
2681
2684
.
4.
Chhetri
,
D. K.
,
Neubauer
,
J.
, and
Berry
,
D. A.
(
2012
). “
Neuromuscular control of fundamental frequency and glottal posture at phonation onset
,”
J. Acoust. Soc. Am.
131
(
2
),
1401
1412
.
5.
Chhetri
,
D. K.
,
Neubauer
,
J.
,
Sofer
,
E.
, and
Berry
,
D. A.
(
2014
). “
Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control
,”
J. Acoust. Soc. Am.
135
(
4
),
2052
2064
.
6.
Cortés
,
J. P.
,
Espinoza
,
V. M.
,
Ghassemi
,
M.
,
Mehta
,
D. D.
,
Van Stan
,
J. H.
,
Hillman
,
R. E.
,
Guttag
,
J. V.
, and
Zañartu
,
M.
(
2018
). “
Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration
,”
PLoS One
13
(
12
),
e0209017
.
7.
Erath
,
B. D.
,
Zañartu
,
M.
,
Stewart
,
K. C.
,
Plesniak
,
M. W.
,
Sommer
,
D. E.
, and
Peterson
,
S. D.
(
2013
). “
A review of lumped-element models of voiced speech
,”
Speech Commun.
55
(
5
),
667
690
.
8.
Espinoza
,
V. M.
,
Mehta
,
D. D.
,
Stan
,
J. H. V.
,
Hillman
,
R. E.
, and
Zañartu
,
M.
(
2020
). “
Glottal aerodynamics estimated from neck-surface vibration in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
63
(
9
),
2861
2869
.
9.
Espinoza
,
V. M.
,
Zañartu
,
M.
,
Stan
,
J. H. V.
,
Mehta
,
D. D.
, and
Hillman
,
R. E.
(
2017
). “
Glottal aerodynamic measures in women with phonotraumatic and nonphonotraumatic vocal hyperfunction
,”
J. Speech Lang. Hear. Res.
60
(
8
),
2159
2169
.
10.
Farley
,
G. R.
(
1996
). “
A biomechanical laryngeal model of voice F0 and glottal width control
,”
J. Acoust. Soc. Am.
100
(
6
),
3794
3812
.
11.
Galindo
,
G. E.
,
Peterson
,
S. D.
,
Erath
,
B. D.
,
Castro
,
C.
,
Hillman
,
R. E.
, and
Zañartu
,
M.
(
2017
). “
Modeling the pathophysiology of phonotraumatic vocal hyperfunction with a triangular glottal model of the vocal folds
,”
J. Speech Lang. Hear. Res.
60
(
9
),
2452
2471
.
12.
Geng
,
B.
,
Pham
,
N.
,
Xue
,
Q.
, and
Zheng
,
X.
(
2020
). “
A three-dimensional vocal fold posturing model based on muscle mechanics and magnetic resonance imaging of a canine larynx
,”
J. Acoust. Soc. Am.
147
(
4
),
2597
2608
.
13.
Gömmel
,
A.
,
Butenweg
,
C.
,
Bolender
,
K.
, and
Grunendahl
,
A.
(
2007
). “
A muscle controlled finite-element model of laryngeal abduction and adduction
,”
Comput. Methods Biomech. Biomed. Eng.
10
(
5
),
377
388
.
14.
Hillman
,
R. E.
,
Stepp
,
C. E.
,
Van Stan
,
J. H.
,
Zañartu
,
M.
, and
Mehta
,
D. D.
(
2020
). “
An updated theoretical framework for vocal hyperfunction
,”
Am. J. Speech Lang. Pathol.
29
(
4
),
2254
2260
.
15.
Huber
,
J. E.
,
Stathopoulos
,
E. T.
, and
Sussman
,
J. E.
(
2004
). “
The control of aerodynamics, acoustics, and perceptual characteristics during speech production
,”
J. Acoust. Soc. Am.
116
(
4
),
2345
2353
.
16.
Hunter
,
E. J.
, and
Titze
,
I. R.
(
2007
). “
Refinements in modeling the passive properties of laryngeal soft tissue
,”
J. Appl. Physiol.
103
(
1
),
206
219
.
17.
Hunter
,
E. J.
,
Titze
,
I. R.
, and
Alipour
,
F.
(
2004
). “
A three-dimensional model of vocal fold abduction/adduction
,”
J. Acoust. Soc. Am.
115
(
4
),
1747
1759
.
18.
Ibarra
,
E. J.
,
Parra
,
J. A.
,
Alzamendi
,
G. A.
,
Cortés
,
J. P.
,
Espinoza
,
V. M.
,
Mehta
,
D. D.
,
Hillman
,
R. E.
, and
Zañartu
,
M.
(
2021
). “
Estimation of subglottal pressure, vocal fold collision pressure, and intrinsic laryngeal muscle activation from neck-surface vibration using a neural network framework and a voice production model
,”
Front. Physiol.
12
,
1419
.
19.
Lester
,
R. A.
,
Daliri
,
A.
,
Enos
,
N.
,
Abur
,
D.
,
Lupiani
,
A. A.
,
Letcher
,
S.
, and
Stepp
,
C. E.
(
2020
). “
The relation of articulatory and vocal auditory & motor control in typical speakers
,”
J. Speech Lang. Hear. Res.
63
(
11
),
3628
3642
.
20.
Lowell
,
S. Y.
, and
Story
,
B. H.
(
2006
). “
Simulated effects of cricothyroid and thyroarytenoid muscle activation on adult-male vocal fold vibration
,”
J. Acoust. Soc. Am.
120
(
1
),
386
397
.
21.
Lucero
,
J. C.
, and
Schoentgen
,
J.
(
2015
). “
Smoothness of an equation for the glottal flow rate versus the glottal area
,”
J. Acoust. Soc. Am.
137
(
5
),
2970
2973
.
22.
Manriquez
,
R.
,
Peterson
,
S. D.
,
Prado
,
P.
,
Orio
,
P.
,
Galindo
,
G. E.
, and
Zanartu
,
M.
(
2019
). “
Neurophysiological Muscle Activation Scheme for Controlling Vocal Fold Models
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
27
(
5
),
1043
1052
.
23.
Mehta
,
D. D.
,
Espinoza
,
V. M.
,
Van Stan
,
J. H.
,
Zañartu
,
M.
, and
Hillman
,
R. E.
(
2019
). “
The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation
,”
J. Acoust. Soc. Am.
145
(
5
),
EL386
EL392
.
24.
Mehta
,
D. D.
,
Van Stan
,
J. H.
,
Zañartu
,
M.
,
Ghassemi
,
M.
,
Guttag
,
J. V.
,
Espinoza
,
V. M.
,
Cortés
,
J. P.
,
Cheyne
,
H. A.
, II
, and
Hillman
,
R. E.
(
2015
). “
Using ambulatory voice monitoring to investigate common voice disorders: Research update
,”
Front. Bioeng. Biotechnol.
3
,
155
.
25.
Moisik
,
S. R.
, and
Gick
,
B.
(
2017
). “
The quantal larynx: The stable regions of laryngeal biomechanics and implications for speech production
,”
J. Speech Lang. Hear. Res.
60
(
3
),
540
560
.
26.
Movahhedi
,
M.
,
Geng
,
B.
,
Xue
,
Q.
, and
Zheng
,
X.
(
2021
). “
Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics
,”
J. Acoust. Soc. Am.
150
(
1
),
29
42
.
27.
Palaparthi
,
A.
,
Smith
,
S.
, and
Titze
,
I. R.
(
2019
). “
Mapping thyroarytenoid and cricothyroid activations to postural and acoustic features in a fiber-gel model of the vocal folds
,”
Appl. Sci.
9
(
21
),
4671
.
28.
Poletto
,
C. J.
,
Verdun
,
L. P.
,
Strominger
,
R.
, and
Ludlow
,
C. L.
(
2004
). “
Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures
,”
J. Appl. Physiol.
97
(
3
),
858
866
.
29.
Story
,
B. H.
(
2008
). “
Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002
,”
J. Acoust. Soc. Am.
123
(
1
),
327
335
.
30.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
(
2
),
1249
1260
.
31.
Titze
,
I. R.
(
2002
). “
Regulating glottal airflow in phonation: Application of the maximum power transfer theorem to a low dimensional phonation model
,”
J. Acoust. Soc. Am.
111
(
1
),
367
376
.
32.
Titze
,
I. R.
(
2006
).
The Myoelastic Aerodynamic Theory of Phonation
, 1st ed. (
National Center for Voice and Speech
,
Salt Lake City, UT
).
33.
Titze
,
I. R.
, and
Hunter
,
E. J.
(
2007
). “
A two-dimensional biomechanical model of vocal fold posturing
,”
J. Acoust. Soc. Am.
121
(
4
),
2254
2260
.
34.
Titze
,
I. R.
, and
Palaparthi
,
A.
(
2016
). “
Sensitivity of Source-Filter Interaction to Specific Vocal Tract Shapes
,”
IEEE/ACM Trans. Audio Speech Lang. Process.
24
(
12
),
2507
2515
.
35.
Titze
,
I. R.
,
Story
,
B.
,
Smith
,
M.
, and
Long
,
R.
(
2002
). “
A reflex resonance model of vocal vibrato
,”
J. Acoust. Soc. Am.
111
(
5
),
2272
2282
.
36.
Titze
,
I. R.
, and
Story
,
B. H.
(
2002
). “
Rules for controlling low-dimensional vocal fold models with muscle activation
,”
J. Acoust Soc. Am.
112
,
1064
1076
.
37.
Van Stan
,
J. H.
,
Ortiz
,
A. J.
,
Cortés
,
J. P.
,
Marks
,
K. L.
,
Toles
,
L. E.
,
Mehta
,
D. D.
,
Burns
,
J. A.
,
Hron
,
T.
,
Stadelman-Cohen
,
T.
,
Krusemark
,
C.
,
Muise
,
J.
,
Fox-Galalis
,
A. B.
,
Nudelman
,
C.
,
Zeitels
,
S.
, and
Hillman
,
R. E.
(
2021
). “
Differences in daily voice use measures between female patients with nonphonotraumatic vocal hyperfunction and matched controls
,”
J. Speech Lang. Hear. Res.
64
(
5
),
1457
1470
.
38.
Yin
,
J.
, and
Zhang
,
Z.
(
2014
). “
Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies
,”
J. Biomech. Eng.
136
,
1110061
11100610
.
39.
Zañartu
,
M.
(
2006
). “
Influence of acoustic loading on the flow-induced oscillations of single mass models of the human larynx
,” Master's thesis,
School of Electrical and Computer Engineering, Purdue University
,
West Lafayette, IN
.
40.
Zañartu
,
M.
,
Galindo
,
G. E.
,
Erath
,
B. D.
,
Peterson
,
S. D.
,
Wodicka
,
G. R.
, and
Hillman
,
R. E.
(
2014
). “
Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction
,”
J. Acoust. Soc. Am.
136
(
6
),
3262
3271
.
41.
Zhang
,
Z.
(
2016
). “
Mechanics of human voice production and control
,”
J. Acoust. Soc. Am.
140
(
4
),
2614
2635
.
You do not currently have access to this content.