The impacts of characteristic weather events and seasonal patterns on infrasound propagation in the Arctic region are simulated numerically. The methodology utilizes wide-angle parabolic equation methods for a windy atmosphere with inputs provided by radiosonde observations and a high-resolution reanalysis of Arctic weather. The calculations involve horizontal distances up to 200 km for which interactions with the troposphere and lower stratosphere dominate. Among the events examined are two sudden stratospheric warmings, which are found to weaken upward refraction by temperature gradients while creating strongly asymmetric refraction from disturbances to the circumpolar winds. Also examined are polar low events, which are found to enhance negative temperature gradients in the troposphere and thus lead to strong upward refraction. Smaller-scale and topographically driven phenomena, such as low-level jets, katabatic winds, and surface-based temperature inversions, are found to create frequent surface-based ducting out to 100 km. The simulations suggest that horizontal variations in the atmospheric profiles, in response to changing topography and surface property transitions, such as ice boundaries, play an important role in the propagation.

1.
Andreas
,
E. L.
,
Claffy
,
K. J.
, and
Makshtas
,
A. P.
(
2000
). “
Low-level atmospheric jets and inversions over the western Weddell Sea
,”
Boundary-Layer Meteorol.
97
(
3
),
459
486
.
2.
Arrowsmith
,
S. J.
,
Whitaker
,
R.
,
Taylor
,
S. R.
,
Burlacu
,
R.
,
Stump
,
B.
,
Hedlin
,
M.
,
Randall
,
G.
,
Hayward
,
C.
, and
ReVelle
,
D.
(
2008
). “
Regional monitoring of infrasound events using multiple arrays: Application to Utah and Washington State
,”
Geophys. J. Int.
175
,
291
300
.
3.
Asming
,
V. E.
,
Baranov
,
S. V.
,
Vinogradov
,
A. N.
,
Vinogradov
,
Y. A.
, and
Fedorov
,
A. V.
(
2016
). “
Using an infrasonic method to monitor the destruction of glaciers in Arctic conditions
,”
Acoust. Phys.
62
(
5
),
583
592
.
4.
Assink
,
J.
,
Smets
,
P.
,
Marcillo
,
O.
,
Weemstra
,
C.
,
Lalande
,
J.-M.
,
Waxler
,
R.
, and
Evers
,
L.
(
2019
). “
Advances in infrasonic remote sensing methods
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd edition, edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Cham, Switzerland
), pp.
605
632
.
5.
Assink
,
J.
,
Waxler
,
R.
, and
Velea
,
D.
(
2017
). “
A wide-angle high Mach number modal expansion for infrasound propagation
,”
J. Acoust. Soc. Am.
141
(
3
),
1781
1792
.
6.
Baldwin
,
M. P.
,
Ayarzagüena
,
B.
,
Birner
,
T.
,
Butchart
,
N.
,
Butler
,
A. H.
,
Charlton-Perez
,
A. J.
,
Domeisen
,
D. I. V.
,
Garfinkel
,
C. I.
,
Garny
,
H.
,
Gerber
,
E. P.
,
Hegglin
,
M. I.
,
Langematz
,
U.
, and
Pedatella
,
N. P.
(
2021
). “
Sudden stratospheric warmings
,”
Rev. Geophys.
59
,
e2020RG000708
, .
7.
Bilello
,
M. A.
Survey of arctic and subarctic temperature inversions
,” in
Technical Report 161
,
U.S. Army Materiel Command Cold Regions Research and Engineering Laboratory
,
Hanover, NH
, 1966.
8.
Bromwich
,
D. H.
(
1989
). “
An extraordinary katabatic wind regime at Terra Nova Bay, Antarctica
,”
Mon. Weather Rev.
117
(
3
),
688
695
.
9.
Bromwich
,
D. H.
,
Cassano
,
J. J.
,
Klein
,
T.
,
Heinemann
,
G.
,
Hines
,
K. M.
,
Steffen
,
K.
, and
Box
,
J. E.
(
2001
). “
Mesoscale modeling of katabatic winds over Greenland with the Polar MM5
,”
Mon. Weather Rev.
129
(
9
),
2290
2309
.
10.
Bromwich
,
D. H.
,
Wilson
,
A. B.
,
Bai
,
L.
,
Liu
,
Z.
,
Barlage
,
M.
,
Shih
,
C.
,
Maldonado
,
S.
,
Hines
,
K. M.
,
Wang
,
S.
,
Woollen
,
J.
,
Kuo
,
B.
,
Lin
,
H.
,
Wee
,
T.
,
Serreze
,
M. C.
, and
Walsh
,
J. E.
(
2018
). “
The Arctic System Reanalysis, Version 2
,”
Bull. Am. Meteorol. Soc.
99
,
805
828
.
11.
Butler
,
A. H.
,
Sjoberg
,
J. P.
,
Seidel
,
D. J.
, and
Rosenlof
,
K. H.
(
2017
). “
A sudden stratospheric warming compendium
,”
Earth Syst. Sci. Data
9
,
63
76
.
12.
Campus
,
P.
, and
Christie
,
D. R.
(
2010
). “
Worldwide observations of infrasonic waves
,” in
Infrasound Monitoring for Atmospheric Studies
, edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Dordrecht
), pp.
185
234
.
13.
Christie
,
D. R.
, and
Campus
,
P.
(
2010
). “
The IMS infrasound network: Design and establishment of infrasound stations
,” in
Infrasound Monitoring for Atmospheric Studies
, edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Dordrecht)
, pp.
29
75
.
14.
Collins
,
M. D.
(
1993
). “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
(
4
),
1736
1742
.
15.
Coy
,
L.
, and
Pawson
,
S.
(
2015
). “
The major stratospheric sudden warming of January 2013: Analyses and forecasts in the GEOS-5 Data Assimilation System
,”
Mon. Wea. Rev.
143
,
491
510
.
16.
Curry
,
J. A.
,
Rossow
,
W. B.
,
Randall
,
D.
, and
Schramm
,
J. L.
(
1996
). “
Overview of Arctic cloud and radiation characteristics
,”
J. Clim.
9
,
1731
1764
.
17.
Dabrowa
,
A. L.
,
Green
,
D. N.
,
Johnson
,
J. B.
,
Phillips
,
J. C.
, and
Rust
,
A. C.
(
2014
). “
Comparing near-regional and local measurements of infrasound from Mount Erebus, Antarctica: Implications for monitoring
,”
J. Volcanol. Geotherm. Res.
288
,
46
61
.
18.
Dallois
,
L.
,
Blanc-Benon
,
P.
, and
Juvé
,
D.
(
2001
). “
A wide-angle parabolic equation for acoustic waves in inhomogeneous moving media: Applications to atmospheric sound propagation
,”
J. Comput. Acoust.
09
(
2
),
477
494
.
19.
De Groot-Hedlin
,
C. D.
(
2017
). “
Infrasound propagation in tropospheric ducts and acoustic shadow zones
,”
J. Acoust. Soc. Am.
142
(
4
),
1816
1827
.
20.
Devasthale
,
A.
,
Willén
,
U.
,
Karlsson
,
K.-G.
, and
Jones
,
C. G.
(
2010
). “
Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles
,”
Atmos. Chem. Phys.
10
,
5565
5572
.
21.
Donn
,
W. L.
, and
Rind
,
D.
(
1971
). “
Natural infrasound as an atmospheric probe
,”
Geophys. J. R. Astron. Soc.
26
,
111
133
.
22.
Drob
,
D.
(
2019
). “
Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Cham, Switzerland
), pp.
485
508
.
23.
Drob
,
D. P.
,
Picone
,
J. M.
, and
Garcés
,
M.
(
2003
). “
Global morphology of infrasound propagation
,”
J. Geophys. Res. Atmos.
108
(
D21
),
4680
, .
24.
Emanuel
,
K. A.
, and
Rotunno
,
R.
(
1989
). “
Polar lows as arctic hurricanes
,”
Tellus A: Dyn. Meteorol. Oceanogr.
41
(
1
),
1
17
.
25.
Evers
,
L. G.
, and
Siegmund
,
P.
(
2009
). “
Infrasonic signature of the 2009 major sudden stratospheric warming
,”
Geophys. Res. Lett.
36
,
L23808
, .
26.
Farmer
,
D. M.
, and
Xie
,
Y.
(
1989
). “
The sound generated by propagating cracks in sea ice
,”
J. Acoust. Soc. Am.
85
,
1489
1500
.
27.
Georges
,
T. M.
, and
Beasley
,
W. H.
(
1977
). “
Refraction of infrasound by upper‐atmospheric winds
,”
J. Acoust. Soc. Am.
61
(
1
),
28
34
.
28.
Gibbons
,
S. J.
,
Asming
,
V.
,
Eliasson
,
L.
,
Fedorov
,
A.
,
Fyen
,
J.
,
Kero
,
J.
,
Kozlovskaya
,
E.
,
Kværna
,
T.
,
Liszka
,
L.
,
Näsholm
,
S. P.
,
Raita
,
T.
,
Roth
,
M.
,
Tiira
,
T.
, and
Vinogradov
,
Y.
(
2015
). “
The European Arctic: A laboratory for seismoacoustic studies
,”
Seismol. Res. Lett.
86
(
3
),
917
928
.
29.
Gibson
,
R. G.
, and
Drob
,
D. P.
(
2005
). “
Infrasound propagation calculation techniques using synoptic and mesoscale atmospheric specifications
,” in
Proceedings of the 27th Seismic Research Review: Ground‐Based Nuclear Explosion Monitoring Technologies, Tech. Rep. LA‐UR‐05–6407
(
Los Alamos National Laboratory
,
Los Alamos, New Mexico
), pp.
828
837
.
30.
Heimann
,
D.
, and
Gross
,
G.
(
1999
). “
Coupled simulation of meteorological parameters and sound level in a narrow valley
,”
Appl. Acoust.
56
(
2
),
73
100
.
31.
Hines
,
K. M.
, and
Bromwich
,
D.
(
2008
). “
Development and testing of Polar WRF. Part I. Greenland ice sheet meteorology
,”
Mon. Wea. Rev.
136
(
6
),
1971
1989
.
32.
Hines
,
K. M.
,
Bromwich
,
D. H.
,
Bai
,
L.
,
Bitz
,
C. M.
,
Powers
,
J. G.
, and
Manning
,
K. W.
(
2015
). “
Sea ice enhancements to Polar WRF
,”
Mon. Wea. Rev.
143
(
6
),
2363
2385
.
33.
Jakobson
,
L.
,
Vihma
,
T.
,
Jakobson
,
E.
,
Palo
,
T.
,
Männik
,
A.
, and
Jaagus
,
J.
(
2013
). “
Low-level jet characteristics over the Arctic Ocean in spring and summer
,”
Atmos. Chem. Phys.
13
,
11089
11099
.
34.
Kim
,
K.
, and
Rodgers
,
A.
(
2017
). “
Influence of low-altitude meteorological conditions on local infrasound propagation investigated by 3-D full-waveform modeling
,”
Geophys. J. Int.
210
,
1252
1263
.
35.
Kim
,
K.
,
Rodgers
,
A.
, and
Seastrand
,
D.
(
2018
). “
Local infrasound variability related to in situ atmospheric observation
,”
Geophys. Res. Lett.
45
,
2954
2962
, .
36.
Kolstad
,
E. W.
,
Breiteig
,
T.
, and
Scaife
,
A. A.
(
2010
). “
The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere
,”
Q. J. R. Meteorol. Soc.
136
,
886
893
.
37.
Le Pichon
,
A.
,
Blanc
,
E.
, and
Drob
,
D.
(
2005
). “
Probing high‐altitude winds using infrasound
,”
J. Geophys. Res. Atmos.
110
,
D20104
, .
38.
Le Pichon
,
A.
,
Ceranna
,
L.
, and
Vergoz
,
J.
(
2012
). “
Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network
,”
J. Geophys. Res.
117
,
D05121
, .
39.
Lihoreau
,
B.
,
Gauvreau
,
B.
,
Bérengier
,
M.
,
Blanc-Benon
,
P.
, and
Calmet
,
I.
(
2006
). “
Outdoor sound propagation modeling in realistic environments: Application of coupled parabolic and atmospheric models
,”
J. Acoust. Soc. Am.
120
(
1
),
110
119
.
40.
Lingevitch
,
J. F.
,
Collins
,
M. D.
,
Dacol
,
D. K.
,
Drob
,
D. P.
,
Rogers
,
J. C. W.
, and
Siegmann
,
W. L.
(
2002
). “
A wide angle and high Mach number parabolic equation
,”
J. Acoust. Soc. Am.
111
(
2
),
729
734
.
41.
McComas
,
S.
,
Hayward
,
C.
,
Pace
,
M.
,
Simpson
,
C.
,
McKenna
,
M.
, and
Stump
,
B.
(
2018
). “
Infrasound monitoring in non-traditional environments
,”
J. Acoust. Soc. Am.
144
,
3201
3209
.
42.
McKenna
,
M.
,
Gibson
,
R.
,
Walker
,
B.
,
McKenna
,
J.
,
Winslow
,
N.
, and
Kofford
,
A.
(
2012
). “
Topographic effects on infrasound propagation
,”
J. Acoust. Soc. Am.
131
(
1
),
35
46
.
43.
McKenna
,
M. H.
,
Stump
,
B. W.
, and
Hayward
,
C.
(
2008
). “
Effect of time‐varying tropospheric models on near‐regional and regional infrasound propagation as constrained by observational data
,”
J. Geophys. Res. Atmos.
113
,
D11111
, .
44.
National Center for Atmospheric Research/University Corporation for Atmospheric Research, and Polar Meteorology Group/Byrd Polar and Climate Research Center/The Ohio State University
(NCAR/UCAR/OSU) (
2017
).
Arctic System Reanalysis version 2. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory
https://rda.ucar.edu/datasets/ds631.1/ (Last viewed 17 September 2021).
45.
Norris
,
D.
,
Gibson
,
R.
, and
Bongiovanni
,
K.
(
2009
). “
Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere
,” in
Infrasound Monitoring for Atmospheric Studies
, edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Dordrecht
), pp.
541
573
.
46.
Okada
,
Y.
,
Yoshihisa
,
K.
, and
Tatsuda
,
K.
(
2016
). “
Annual fluctuation of atmospheric absorption of sound in various world regions
,”
Acoust. Sci. Technol.
37
(
2
),
66
74
.
47.
Orlanski
,
I.
(
1975
). “
A rational subdivision of scales for atmospheric processes
,”
Bull. Am. Meteorol. Soc.
56
(
5
),
527
530
.
48.
Ostashev
,
V. E.
,
Juvé
,
D.
, and
Blanc-Benon
,
P.
(
1997
). “
Derivation of a wide-angle parabolic equation for sound waves in inhomogeneous moving media
,”
Acta Acust. united Ac.
83
(
3
),
455
460
.
49.
Ostashev
,
V. E.
,
Muhlestein
,
M. B.
, and
Wilson
,
D. K.
(
2019
). “
Extra-wide-angle parabolic equations in motionless and moving media
,”
J. Acoust. Soc. Am.
145
,
1031
1047
.
50.
Ostashev
,
V. E.
, and
Wilson
,
D. K.
(
2015
).
Acoustics in Moving Inhomogeneous Media
(
CRC Press
,
Boca Raton, FL
).
51.
Ostashev
,
V. E.
,
Wilson
,
D. K.
, and
Muhlestein
,
M. B.
(
2020
). “
Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere
,”
J. Acoust. Soc. Am.
147
,
3969
3984
.
52.
Park
,
J.
,
Stump
,
B. W.
,
Hayward
,
C.
,
Arrowsmith
,
S. J.
,
Che
,
I.-Y.
, and
Drob
,
D. P.
(
2016
). “
Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation
,”
J. Acoust. Soc. Am.
140
(
1
),
239
259
.
53.
Pierce
,
A. D.
(
1981
).
Acoustics: An Introduction to Its Physical Principles and Applications
(
McGraw-Hill
,
New York
).
54.
Rind
,
D. H.
, and
Donn
,
W. L.
(
1978
). “
Infrasound observations of variability during stratospheric warmings
,”
J. Atmos. Sci.
35
,
546
553
.
55.
Salomons
,
E.
(
2001
).
Computational Atmospheric Acoustics
(
Kluwer Academic
,
Dordrecht)
.
56.
San Francisco State University
(
2021
). Analyses of jet stream positions. https://squall.sfsu.edu/crws/archive/jet_arch.html (Last viewed 18 January 2021).
57.
Simmonds
,
I.
, and
Rudeva
,
I.
(
2012
). “
The great Arctic cyclone of August 2012
,”
Geophys. Res. Lett.
39
,
L23709
, .
58.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Barker
,
D. M.
,
Duda
,
M. G.
,
Huang
,
X.-Y.
,
Wang
,
W.
, and
Powers
,
J. G.
(
2008
). “
A description of the Advanced Research WRF Version 3
,”
NCAR Tech.
Note NCAR/TN-475+STR,
113
pp.
59.
Smets
,
P.
,
Assink
,
J.
, and
Evers
,
L.
(
2019
). “
The study of sudden stratospheric warmings using infrasound
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Cham, Switzerland
), pp.
723
755
.
60.
Smets
,
P. S. M.
, and
Evers
,
L. G.
(
2014
). “
The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations
,”
J. Geophys. Res. Atmos.
119
,
12,084
12099
, .
61.
Smink
,
M. M. E.
,
Assink
,
J.
,
Bosveld
,
F.
,
Smets
,
P.
, and
Evers
,
L.
(
2019
). “
A three-dimensional array for the study of infrasound propagation through the atmospheric boundary layer
,”
J. Geophys. Res. Atmos.
124
,
9299
9313
, .
62.
Szuberla
,
C. A.
, and
Olson
,
J. V.
(
2004
). “
Uncertainties associated with parameter estimation in atmospheric infrasound arrays
,”
J. Acoust. Soc. Am.
115
(
1
),
253
258
.
63.
University of Minnesota
(
2020
). “
ArcticDEM initiative
,” https://www.pgc.umn.edu/data/arcticdem/ (Last viewed 27 December 2020).
64.
University of Wyoming
(
2018
). Department of Atmospheric Sciences. http://weather.uwyo.edu/upperair/sounding.html (Last viewed 10 January 2021).
65.
van As
,
D.
,
Fausto
,
R. S.
,
Steffen
,
K.
,
Ahlstrøm
,
A. P.
,
Andersen
,
S. B.
,
Andersen
,
M. L.
,
Box
,
J. E.
,
Charalampidis
,
C.
,
Citterio
,
M.
,
Colgan
,
W. T.
,
Edelvang
,
K.
,
Larsen
,
S. H.
,
Nielsen
,
S.
,
Veicherts
,
M.
, and
Weidick
,
A.
(
2014
). “
Katabatic winds and piteraq storms: observations from the Greenland ice sheet
,”
Geol. Surv. Denmark Greenl. Bull.
31
,
83
86
.
66.
Van den Broeke
,
M. R.
,
Duynkerke
,
P. G.
, and
Oerlemans
,
J.
(
1994
). “
The observed katabatic flow at the edge of the Greenland ice sheet during GIMEX-91
,”
Glob. Planet. Change
9
,
3
15
.
67.
Waxler
,
R.
, and
Assink
,
J.
(
2019
). “
Propagation modeling through realistic atmosphere and benchmarking
,” in
Infrasound Monitoring for Atmospheric Studies
, 2nd ed., edited by
A.
Le Pichon
,
E.
Blanc
, and
A.
Hauchecorne
(
Springer
,
Cham, Switzerland)
, pp.
509
549
.
68.
Waxler
,
R.
,
Talmadge
,
C. L.
,
Dravida
,
S.
, and
Gilbert
,
K. E.
(
2006
). “
The near-ground structure of the nocturnal sound field
,”
J. Acoust. Soc. Am.
119
,
86
95
.
69.
West
,
M.
,
Gilbert
,
K.
, and
Sack
,
R. A.
(
1992
). “
A tutorial on the parabolic equation (PE) model used for long range sound propagation in the atmosphere
,”
Appl Acoust.
37
,
31
49
.
70.
Wilson
,
D. K.
,
Breton
,
D. J.
,
Alter
,
R. E.
,
Waldrop
,
L. E.
,
Barnes
,
W. M.
,
Muhlestein
,
M. B.
, and
Ostashev
,
V. E.
(
2018
). “
Modeling RF and acoustic signal propagation in complex environments
,” in
Proceedings SPIE 10635, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX
(
The International Society for Optics and Photonics
,
Bellingham, WA
) p. 1063519.
71.
Wilson
,
A. B.
,
Bromwich
,
D. H.
, and
Hines
,
K. M.
(
2011
). “
Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis
,”
J. Geophys. Res.
116
,
D11112
, .
72.
Wilson
,
D. K.
,
Noble
,
J. M.
, and
Coleman
,
M. A.
(
2003
). “
Sound propagation in the nocturnal boundary layer
,”
J. Atmos. Sci.
60
,
2473
2486
.
73.
Wilson
,
D. K.
,
Pettit
,
C. L.
,
Ostashev
,
V. E.
, and
Vecherin
,
S. N.
(
2014
). “
Description and quantification of uncertainty in outdoor sound propagation calculations
,”
J. Acoust. Soc. Am.
136
(
3
),
1013
1028
.
74.
Wilson
,
D. K.
, and
Thomson
,
D. W.
(
1991
). “
Natural temporal variability of atmospheric acoustic absorption coefficients
,”
Appl Acoust.
34
(
2
),
111
121
.
75.
Zhang
,
Y.
,
Seidel
,
D. J.
,
Golaz
,
J. C.
,
Deser
,
C.
, and
Tomas
,
R. A.
(
2011
). “
Climatological characteristics of Arctic and Antarctic surface-based inversions
,”
J. Clim.
24
(
19
),
5167
5186
.
You do not currently have access to this content.