In this study we investigated the effect of sex- and age-related differences in vocal fold length, thickness, and depth on voice production in a three-dimensional vocal fold model. The results showed that the cause-effect relationships between vocal fold physiology and voice production previously identified in an adult male-like vocal fold geometry remained qualitatively the same in vocal folds with geometry representative of adult females and children. We further showed that the often-observed differences in voice production between adult males, adult females, and children can be explained by differences in length and thickness. The lower F0, higher flow rate, larger vocal fold vibration amplitude, and higher sound pressure level (SPL) in adult males as compared to adult females and children can be explained by differences in vocal fold length. In contrast, the thickness effect dominated and contributed to the larger closed quotient of vocal fold vibration, larger normalized maximum flow declination rate, and lower H1-H2 in adult males as compared to adult females and children. The effect of differences in vocal fold depth was generally small. When targeting a specific SPL, adult males experienced a lower peak vocal fold contact pressure during phonation than adult females and children.

1.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
(
2000
). “
A finite-element model of vocal-fold vibration
,”
J. Acoust. Soc. Am.
108
(
6
),
3003
3012
.
2.
Alipour-Haghighi
,
F.
, and
Titze
,
I. R.
(
1991
). “
Elastic models of vocal fold tissues
,”
J. Acoust. Soc. Am.
90
(
3
),
1326
1331
.
3.
Alku
,
P.
,
Bäckström
,
T.
, and
Vilkman
,
E.
(
2002
). “
Normalized amplitude quotient for parametrization of the glottal flow
,”
J. Acoust. Soc. Am.
112
(
2
),
701
710
.
4.
Awan
,
S. N.
,
Giovinco
,
A.
, and
Owens
,
J.
(
2012
). “
Effects of vocal intensity and vowel type on cepstral analysis of voice
,”
J. Voice
26
(
5
),
670.e15
670.e20
.
5.
Bishop
,
J.
, and
Keating
,
P.
(
2012
). “
Perception of pitch location within a speaker's range: Fundamental frequency, voice quality and speaker sex
,”
J. Acoust. Soc. Am.
132
(
2
),
1100
1112
.
6.
Chan
,
R. W.
,
Gray
,
S. D.
, and
Titze
,
I. R.
(
2001
). “
The importance of hyaluronic acid in vocal fold biomechanics
,”
Otolaryngology-Head and Neck Surgery
124
(
6
),
607
614
.
7.
Colton
,
R. H.
,
Casper
,
J. K.
, and
Leonard
,
R.
(
2011
).
Understanding Voice Problems: A Physiological Perspective for Diagnosis and Treatment
(
Lippincott Williams and Wilkins
,
Baltimore, MD
), Chap. 13.
8.
Desjardins
,
M
,
Verdolini Abbott
,
K.
, and
Zhang
,
Z.
(
2021
). “
Computational simulations of respiratory-laryngeal interactions and their effects on lung volume termination during phonation: Considerations for hyperfunctional voice disorders
,”
J. Acoust. Soc. Am.
149
(
6
),
3988
3999
.
9.
Gillespie
,
A. I.
,
Gartner-Schmidt
,
J.
,
Rubinstein
,
E. N.
, and
Abbott
,
K. V.
(
2013
). “
Aerodynamic profiles of women with muscle tension dysphonia/aphonia
,”
J. Speech Lang. Hear. Res.
56
(
2
),
481
488
.
10.
Hillenbrand
,
J. M.
,
Cleveland
,
R. A.
, and
Erickson
,
R. L.
(
1994
). “
Acoustic correlates of breathy vocal quality
,”
J. Speech Hear. Res.
37
(
4
),
769
778
.
11.
Hirano
,
M.
, and
Kakita
,
Y.
(
1985
). “
Cover-body theory of vocal fold vibration
,” in
Speech Science: Recent Advances
, edited by
R. G.
Daniloff
(
College-Hill Press
,
San Diego
), pp.
1
46
.
12.
Hirano
,
M.
,
Kurita
,
S.
, and
Nakashima
,
T.
(
1983
). “
Growth, development, and aging of human vocal folds
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D. M.
Bless
and
J. H.
Abbs
(
College-Hill
,
San Diego
), pp.
22
43
.
13.
Hollien
,
H.
(
1960
). “
Vocal pitch variation related to changes in vocal fold length
,”
J. Speech Hear. Res.
3
(
2
),
150
156
.
14.
Hollien
,
H.
, and
Curtis
,
F.
(
1960
). “
A laminagraphic study of vocal pitch
,”
J. Speech Hear. Res.
3
(
4
),
361
371
.
15.
Holmberg
,
E.
,
Hillman
,
R.
, and
Perkell
,
J.
(
1988
). “
Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice
,”
J. Acoust. Soc. Am.
84
(
2
),
511
529
.
16.
Hunter
,
E. J.
,
Tanner
,
K.
, and
Smith
,
M. E.
(
2011
). “
Gender differences affecting vocal health of women in vocally demanding careers
,”
Logoped. Phon. Vocol.
36
(
3
),
128
136
.
17.
Iseli
,
M.
,
Shue
,
Y. L.
, and
Alwan
,
A.
(
2007
). “
Age, sex, and vowel dependencies of acoustic measures related to the voice source
,”
J. Acoust. Soc. Am.
121
(
4
),
2283
2295
.
18.
Kahane
,
J.
(
1978
). “
A morphological study of the human prepubertal and pubertal larynx
,”
Am. J. Anat.
151
(
1
),
11
20
.
19.
Kim
,
H. T.
(
2020
). “
Vocal feminization for transgender women: Current strategies and patient perspectives
,”
IJGM
13
,
43
52
.
20.
Koçak
,
I.
,
Akpınar
,
M. E.
,
Çakır
,
Z. A.
,
Doğan
,
M.
,
Bengisu
,
S.
, and
Çelikoyar
,
M. M.
(
2010
). “
Laser reduction glottoplasty for managing androphonia after failed cricothyroid approximation surgery
,”
J. Voice
24
(
6
),
758
764
.
21.
Kreiman
,
J.
, and
Sidtis
,
D.
(
2011
).
Foundations of Voice Studies: An Interdisciplinary Approach to Voice Production and Perception
(
Wiley-Blackwell
,
Hoboken, NJ
), Chap. 4.
22.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2005
). “
Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds
,”
J. Acoust. Soc. Am.
118
(
5
),
2798
2801
.
23.
Mendelsohn
,
A.
, and
Zhang
,
Z.
(
2011
). “
Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds
,”
J. Acoust. Soc. Am.
130
(
5
),
2961
2968
.
24.
Miller
,
M. K.
, and
Verdolini
,
K.
(
1995
). “
Frequency and risk factors for voice problems in teachers of singing and control subjects
,”
J. Voice
9
(
4
),
348
362
.
25.
Patel
,
R.
,
Donohue
,
K. D.
,
Unnikrishnan
,
H.
, and
Kryscio
,
R. J.
(
2015
). “
Kinematic measurements of the vocal-fold displacement waveform in typical children and adult populations: Quantification of high-speed endoscopic videos
,”
J. Speech Lang. Hear. Res.
58
(
2
),
227
240
.
26.
Patel
,
R.
, and
Ternström
,
S.
(
2021
). “
Quantitative and qualitative electroglottographic wave shape differences in children and adults using voice map–based analysis
,”
J. Speech Lang. Hear. Res.
64
(
8
),
2977
2995
.
27.
Roy
,
N.
,
Merrill
,
R. M.
,
Thibeault
,
S.
,
Parsa
,
R. A.
,
Gray
,
S. D.
, and
Smith
,
E. M.
(
2004
). “
Prevalence of voice disorders in teachers and the general population
,”
J. Speech Lang. Hear. Res.
47
(
2
),
281
293
.
28.
Shue
,
Y. L.
, and
Iseli
,
M.
(
2008
). “
The role of voice source measures on automatic gender classification
,” in
2008 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp.
4493
4496
.
29.
Solomon
,
N. P.
,
Ramanathan
,
P.
, and
Makashay
,
M. J.
(
2007
). “
Phonation threshold pressure across the pitch range: Preliminary test of a model
,”
J. Voice
21
(
5
),
541
550
.
30.
Stathopoulos
,
E. T.
, and
Sapienza
,
C.
(
1993
). “
Respiratory and laryngeal measures of children during vocal intensity variation
,”
J. Acoust. Soc. Am.
94
(
5
),
2531
2543
.
31.
Stathopoulos
,
E. T.
, and
Weismer
,
G.
(
1985
). “
Oral airflow and air pressure during speech production: A comparative study of children, youths and adults
,”
Folia Phoniatr.
37
(
3–4
),
152
159
.
32.
Tang
,
J.
, and
Stathopoulos
,
E. T.
(
1995
). “
Vocal efficiency as a function of vocal intensity: A study of children, women, and men
,”
J. Acoust. Soc. Am.
97
(
3
),
1885
1892
.
33.
Titze
,
I. R.
(
1989
). “
Physiologic and acoustic differences between male and female voices
,”
J. Acoust. Soc. Am.
85
(
4
),
1699
1707
.
34.
Titze
,
I. R.
(
2011
). “
Vocal fold mass is not a useful quantity for describing F0 in vocalization
,”
J. Speech Lang. Hear. Res.
54
,
520
522
.
35.
Titze
,
I.
, and
Talkin
,
D.
(
1979
). “
A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation
,”
J. Acoust. Soc. Am.
66
(
1
),
60
74
.
36.
Verdolini-Marston
,
K.
,
Titze
,
I. R.
, and
Druker
,
D. G.
(
1990
). “
Changes in phonation threshold pressure with induced conditions of hydration
,”
J. Voice
4
(
2
),
142
151
.
37.
Wu
,
L.
, and
Zhang
,
Z.
(
2019
). “
Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape
,”
J. Acoust. Soc. Am.
146
(
6
),
4190
4198
.
38.
Wu
,
L.
,
Zhang
,
Z.
(
2016
). “
A parametric vocal fold model based on magnetic resonance imaging
,”
J. Acoust. Soc. Am.
140
(
2
),
EL159
EL165
.
39.
Xuan
,
Y.
, and
Zhang
,
Z.
(
2014
). “
Influence of embedded fibers and an epithelium layer on glottal closure pattern in a physical vocal fold model
,”
J. Speech Lang. Hear. Res.
57
(
2
),
416
425
.
40.
Zhang
,
Z.
(
2016a
). “
Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model
,”
J. Acoust. Soc. Am.
139
(
4
),
1493
1507
.
41.
Zhang
,
Z.
(
2016b
). “
Mechanics of human voice production and control
,”
J. Acoust. Soc. Am.
140
(
4
),
2614
2635
.
42.
Zhang
,
Z.
(
2017
). “
Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model
,”
J. Acoust. Soc. Am.
142
(
4
),
2311
2321
.
43.
Zhang
,
Z.
(
2019
). “
Vocal fold contact pressure in a three-dimensional body-cover phonation model
,”
J. Acoust. Soc. Am.
146
(
1
),
256
265
.
44.
Zhang
,
Z.
(
2020
). “
Laryngeal strategies to minimize vocal fold contact pressure and their effect on voice production
,”
J. Acoust. Soc. Am.
148
(
2
),
1039
1050
.
45.
Zhang
,
Z.
(
2020b
). “
Estimation of vocal fold physiology from voice acoustics using machine learning
,”
J. Acoust. Soc. Am.
147
(
3
),
EL264
EL270
.
46.
Zhang
,
Z.
,
Samajder
,
H.
, and
Long
,
J.
(
2017
). “
Biaxial mechanical properties of human vocal fold cover under vocal fold elongation
,”
J. Acoust. Soc. Am.
142
(
4
),
EL356
EL361
.
47.
Zhang
,
Z.
,
Wu
,
L.
,
Gray
,
R.
, and
Chhetri
,
D.
(
2020
). “
Three-dimensional vocal fold structural change due to implant insertion in medialization laryngoplasty
,”
PLoS One
15
(
1
),
e0228464
.
48.
Zimman
,
L.
(
2018
). “
Transgender voices: Insights on identity, embodiment, and the gender of the voice
,”
Lang. Ling. Compass
12
(
8
),
e12284
.
You do not currently have access to this content.