Recent developments in the field of elastography aim at developing the quantification of new mechanical properties of tissues, that are complementary to the shear modulus, which is characteristic of the linear elastic properties of a quasi-incompressible medium. In this context, measurement of the elastic nonlinearity of tissues was recently proposed based on acoustoelasticity. Up to now, most of the experimental applications of acoustoelasticity theory using Landau formalism in human tissues have assumed isotropy. However, this strong hypothesis does not hold in all human tissues, such as muscles that are generally considered as transversely isotropic (TI). In this work, after reviewing the constraints imposed by TI symmetry on the linear and nonlinear elastic properties of TI media, the acoustoelasticity theory in TI incompressible media is developed and implemented experimentally on a TI polyvinyl alcohol phantom and on ex vivo muscular tissues. Based on this theory and on the evolutions of the shear wave speed, with respect to uniaxial static stress, the nonlinear elastic parameter A is experimentally quantified. The estimations of A in ex vivo bovine and porcine muscles are on the order of hundreds of kPa. This work paves the way for more thorough muscle mechanical properties characterization as well as for the development of a potential new biomarker.

1.
Bercoff
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
(
2004
). “
Supersonic shear imaging: A new technique for soft tissue elasticity mapping
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
51
,
396
409
.
2.
Bernal
,
M.
,
Chamming's
,
F.
,
Couade
,
M.
,
Bercoff
,
J.
,
Tanter
,
M.
, and
Gennisson
,
J.-L.
(
2016
). “
In vivo quantification of the nonlinear shear modulus in breast lesions: Feasibility study
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
63
,
101
109
.
3.
Bower
,
A. F.
(
2010
).
Applied Mechanics of Solids
(
Boca Raton, FL
), pp.
794
.
4.
Brillouin
,
L.
(
1925
). “
Les tensions de radiation; leur interprétation en mécanique classique et en relativité,” (“The tensions of radiation and their interpretation in terms of classical mechanics and relativity)
,”
J. Phys. Radium
6
(
11
),
337
353
.
5.
Chadwick
,
P.
(
1993
). “
Wave propagation in incompressible transversely isotropic elastic media I. Homogeneous plane waves
,”
Proc. R. Ir. Acad.
93
(
A
),
231
253
.
6.
Chatelin
,
S.
,
Bernal
,
M.
,
Deffieux
,
T.
,
Papadacci
,
C.
,
Flaud
,
P.
,
Nahas
,
A.
,
Boccara
,
C.
,
Gennisson
,
J.-L.
,
Tanter
,
M.
, and
Pernot
,
M.
(
2014
). “
Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: A multimodality characterization
,”
Phys. Med. Biol.
59
,
6923
6940
.
7.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Ogden
,
R. W.
(
2010
). “
Third- and fourth-order
elasticities of biological soft tissues
,”
J. Acoust. Soc. Am.
127
,
2103
2106
.
8.
Destrade
,
M.
, and
Ogden
,
R. W.
(
2010
). “
On the third- and fourth-order constants of incompressible isotropic elasticity
,”
J. Acoust. Soc. Am.
128
,
3334
3343
.
9.
Fromageau
,
J.
,
Gennisson
,
J.-L.
,
Schmitt
,
C.
,
Maurice
,
R. L.
,
Mongrain
,
R.
, and
Cloutier
,
G.
(
2007
). “
Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
54
,
498
509
.
10.
Gennisson
,
J.-L.
,
Rénier
,
M.
,
Catheline
,
S.
,
Barrière
,
C.
,
Bercoff
,
J.
,
Tanter
,
M.
, and
Fink
,
M.
(
2007
). “
Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force
,”
J. Acoust. Soc. Am.
122
,
3211
3219
.
11.
Gennisson
,
J.-L.
,
Deffieux
,
T.
,
Macé
,
E.
,
Montaldo
,
G.
,
Fink
,
M.
, and
Tanter
,
M.
(
2010
). “
Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by Supersonic Shear Imaging
,”
Ultrasound Med. Biol.
36
(
5
),
789
801
.
12.
Guo
,
J.
,
Hirsch
,
S.
,
Scheel
,
M.
,
Braun
,
J.
, and
Sack
,
I.
(
2016
). “
Three-parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg muscles
,”
Magn. Reson. Med.
75
,
1537
1545
.
13.
Hamilton
,
M. F.
,
Ilinskii
,
Y. A.
, and
Zabolotskaya
,
E. A
(
2004
). “
Separation of compressibility and shear deformation in the elastic energy density (L)
,”
J. Acoust. Soc. Am.
116
,
41
44
.
14.
Hayes
,
M.
, and
Rivlin
,
R. S.
(
1961
). “
Surface waves in deformed elastic materials
,”
Arch. Ration. Mech.
8
,
358
380
.
15.
Hughes
,
D. S.
, and
Kelly
,
J. L.
(
1953
). “
Second-order elastic deformation of solids
,”
Phys. Rev.
92
,
1145
1149
.
16.
Johnson
,
G. C.
(
1982
). “
Acoustoelastic response of polycrystalline aggregates exhibiting transverse isotropy
,”
J. Nondestruct. Eval.
3
,
1
8
.
17.
Knight
,
A. E.
,
Trutna
,
C. A.
,
Rouze
,
N. C.
,
Hobson-Webb
,
L. D.
,
Palmeri
,
M. L.
,
Caenen
,
A.
, and
Nightingale
,
K. R.
(
2020
). “
Demonstration of complex shear wave patterns in skeletal muscle in vivo using 3D SWEI
,” in
2020 IEEE International Ultrasonics Symposium (IUS)
, pp.
1
4
.
18.
Landau
,
L. D.
,
Pitaevskii
,
L. P.
,
Kosevich
,
A. M.
, and
Lifshitz
,
E. M.
(
1985
).
Theory of Elasticity
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
), pp.
195
.
19.
Latorre-Ossa
,
H.
,
Gennisson
,
J.-L.
,
De Brosses
,
E.
, and
Tanter
,
M.
(
2012
). “
Quantitative imaging of nonlinear shear modulus by combining static elastography and shear wave elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
59
,
833
839
.
20.
Li
,
G.-Y.
,
Zheng
,
Y.
,
Liu
,
Y.
,
Destrade
,
M.
, and
Cao
,
Y.
(
2016a
). “
Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method
,”
J. Mech. Phys. Solids
96
,
388
410
.
21.
Li
,
G.-Y.
,
He
,
Q.
,
Qian
,
L.-X.
,
Geng
,
H.
,
Liu
,
Y.
,
Yang
,
X.-Y.
,
Luo
,
J.
, and
Cao
,
Y.
(
2016b
). “
Elastic Cherenkov effects in transversely isotropic soft materials- II: Ex vivo and in vivo experiments
,”
J. Mech. Phys. Solids
94
,
181
190
.
22.
Lopata
,
R. G. P.
,
Nillesen
,
M. M.
,
Hansen
,
H. H. G.
,
Gerrits
,
I. H.
,
Thijssen
,
J. M.
, and
de Korte
,
C. L.
(
2009
). “
Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data
,”
Ultrasound Med. Biol.
35
,
796
812
.
23.
Méndez
,
J.
, and
Keys
,
A.
(
1960
). “
Density and composition of mammalian muscle
,”
Metabolism
9
,
184
188
.
24.
Namani
,
R.
,
Feng
,
Y.
,
Okamoto
,
R. J.
,
Jesuraj
,
N.
,
Sakiyama-Elbert
,
S. E.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
(
2012
). “
Elastic characterization of transversely isotropic soft materials by dynamic shear and asymmetric indentation
,”
J. Biomed. Eng.
134
,
061004
.
25.
Ogden
,
R. W.
(
1984
).
Non-Linear Elastic Deformations
(
Dover Publications
,
Great Britain
), pp.
562
.
26.
Papadacci
,
C.
,
Tanter
,
M.
,
Pernot
,
M.
, and
Fink
,
M.
(
2014
). “
Ultrasound backscatter tensor imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues
,”
IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
61
,
986
996
.
27.
Remenieras
,
J.-P.
,
Bulot
,
M.
,
Gennisson
,
J.-L.
,
Patat
,
F.
,
Destrade
,
M.
, and
Bacle
,
G.
(
2021
). “
Acousto-elasticity of transversely isotropic incompressible soft tissues: Characterization of skeletal striated muscle
,”
Phys. Med. Biol.
66
,
145009
.
28.
Rosen
,
D.
, and
Jiang
,
J.
(
2019
). “
Analyzing acoustoelastic effect of shear wave elastography data for perfused and hydrated soft tissues using a macromolecular network inspired model
,”
J. Biomech.
97
,
109370
.
29.
Royer
,
D.
,
Gennisson
,
J.-L.
,
Deffieux
,
T.
, and
Tanter
,
M.
(
2011
). “
On the elasticity of transverse isotropic soft tissues (L)
,”
J. Acoust. Soc. Am.
129
,
2757
2760
.
30.
Spencer
,
A. J. M.
(Ed.) (
1984
).
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
(
Springer Vienna
,
Vienna
).
You do not currently have access to this content.