A major barrier for the full utilization of metal additive manufacturing (AM) technologies is quality control. Additionally, in situ real time nondestructive monitoring is desirable due to the typical high value and low volume of components manufactured with metal AM. Depending on the application, characteristics such as the geometrical accuracy, porosity, defect size and content, and material properties are quantities of interest for in situ nondestructive evaluation (NDE). In particular, functionally tailored components made with hybrid processing require quantitative NDE of their microstructure and elastic properties. Ultrasonic NDE is able to quantify these relevant characteristics. In this work, an ultrasonic measurement system is used to collect in situ real time measurements during the manufacturing of samples made with a hybrid process, which combines directed energy deposition with milling. In addition to quantifying ultrasonic properties, the measurements are used to gather insight on other geometry, material, and process effects. The results show the utility of ultrasound to evaluate relevant properties during manufacturing of a functionalized material domain, while providing perspective on additional material evolution information obtained from ultrasonic signals.

1.
S.
Webster
,
H.
Lin
,
F. M.
Carter
 III
,
K.
Ehmann
, and
J.
Cao
, “
Physical mechanisms in hybrid additive manufacturing: A process design framework
,”
J. Mater. Process. Technol.
291
,
117048
(
2021
).
2.
V. V.
Popov
and
A.
Fleisher
, “
Hybrid additive manufacturing of steels and alloys
,”
Manuf. Rev.
7
,
6
15
(
2020
).
3.
M. P.
Sealy
,
G.
Madireddy
,
R. E.
Williams
,
P.
Rao
, and
M.
Toursangsaraki
, “
Hybrid processes in additive manufacturing
,”
J. Manuf. Sci. Eng.
140
,
060801
(
2018
).
4.
C. H.
Che-Haron
and
A.
Jawaid
, “
The effect of machining on surface integrity of titanium alloy Ti–6Al–4V
,”
J. Mater. Process. Technol.
166
,
188
192
(
2005
).
5.
O.
Oyelola
,
A.
Jackson-Crisp
,
P.
Crawforth
,
D. M.
Pieris
,
R. J.
Smith
,
R.
M'Saoubi
, and
A. T.
Clare
, “
Machining of directed energy deposited Ti6Al4V using adaptive control
,”
J. Manuf. Processes
54
,
240
250
(
2020
).
6.
T.
Feldhausen
,
N.
Raghavan
,
K.
Saleeby
,
L.
Love
, and
T.
Kurfess
, “
Mechanical properties and microstructure of 316L stainless steel produced by hybrid manufacturing
,”
J. Mater. Process. Technol.
290
,
116970
(
2021
).
7.
J. M.
Flynn
,
A.
Shokrani
,
S. T.
Newman
, and
V.
Dhokia
, “
Hybrid additive and subtractive machine tools—Research and industrial developments
,”
Int. J. Mach. Tools Manuf.
101
,
79
101
(
2016
).
8.
J. L.
Dávila
,
P. I.
Neto
,
P. Y.
Noritomi
,
R. T.
Coelho
, and
J. V. L.
da Silva
, “
Hybrid manufacturing: A review of the synergy between directed energy deposition and subtractive processes
,”
Int. J. Adv. Manuf. Technol.
110
,
3377
3390
(
2020
).
9.
G. M.
Karthik
and
H. S.
Kim
, “
Heterogeneous aspects of additive manufactured metallic parts: A review
,”
Met. Mater. Int.
27
,
1
39
(
2021
).
10.
C. Y.
Yap
,
C. K.
Chua
,
Z. L.
Dong
,
Z. H.
Liu
,
D. Q.
Zhang
,
L. E.
Loh
, and
S. L.
Sing
, “
Review of selective laser melting: Materials and applications
,”
Appl. Phys. Rev.
2
,
041101
(
2015
).
11.
N.
Dumontet
,
D.
Connétable
,
B.
Malard
, and
B.
Viguier
, “
Elastic properties of the α′ Martensitic phase in the Ti-6Al-4V alloy obtained by additive manufacturing
,”
Scr. Mater.
167
,
115
119
(
2019
).
12.
A.
Shinbine
,
T.
Garcin
, and
C.
Sinclair
, “
In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium
,”
Mater. Charact.
117
,
57
64
(
2016
).
13.
A.
Kumar
,
T.
Jayakumar
,
B.
Raj
, and
D.
Banerjee
, “
A new methodology for identification of β-transus temperature in α + β and β titanium alloys using ultrasonic velocity measurement
,”
Philos. Mag.
88
,
327
338
(
2008
).
14.
S.
Liu
and
Y. C.
Shin
, “
Prediction of 3D microstructure and phase distributions of Ti6Al4V built by the directed energy deposition process via combined multi-physics models
,”
Addit. Manuf.
34
,
101234
(
2020
).
15.
S.
Wolff
,
T.
Lee
,
E.
Faierson
,
K.
Ehmann
, and
J.
Cao
, “
Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V
,”
J. Manuf. Process.
24
,
397
405
(
2016
).
16.
S. A. M.
Tofail
,
E. P.
Koumoulos
,
A.
Bandyopadhyay
,
S.
Bose
,
L.
O'Donoghue
, and
C.
Charitidis
, “
Additive manufacturing: Scientific and technological challenges, market uptake and opportunities
,”
Mater. Today
21
,
22
37
(
2018
).
17.
C. M.
Kube
,
Y.
Shu
,
A. J.
Lew
, and
D.
Galles
, “
Real-time characterization of laser-generated melt pools using ultrasound
,”
Mater. Eval.
76
, 4,
525
534
(
2018
).
18.
G.
Tapia
and
A.
Elwany
, “
A review on process monitoring and control in metal-based additive manufacturing
,”
J. Manuf. Sci. Eng.
136
,
060801
(
2014
).
19.
S. K.
Everton
,
M.
Hirsch
,
P.
Stravroulakis
,
R. K.
Leach
, and
A. T.
Clare
, “
Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
,”
Mater. Des.
95
,
431
445
(
2016
).
20.
M. S.
Hossain
and
H.
Taheri
, “
In situ process monitoring for additive manufacturing through acoustic techniques
,”
J. Mater. Eng. Perform.
29
,
6249
6262
(
2020
).
21.
H. D.
Vora
and
S.
Sanyal
, “
A comprehensive review: Metrology in additive manufacturing and 3D printing technology
,”
Prog. Addit. Manuf.
5
,
319
353
(
2020
).
22.
F.
Honarvar
and
A.
Varvani-Farahani
, “
A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control
,”
Ultrasonics
108
,
106227
(
2020
).
23.
F. E.
Stanke
and
G. S.
Kino
, “
A unified theory for elastic wave propagation in polycrystalline materials
,”
J. Acoust. Soc. Am.
75
,
665
681
(
1984
).
24.
K. A.
Fisher
, “
Estimation of elastic properties of an additively manufactured lattice using resonant ultrasound spectroscopy
,”
J. Acoust. Soc. Am.
148
,
4025
4036
(
2020
).
25.
A.
Bellotti
,
J.-Y.
Kim
,
J. E.
Bishop
,
B. H.
Jared
,
K.
Johnson
,
D.
Susan
,
P. J.
Noell
, and
L. J.
Jacobs
, “
Nonlinear ultrasonic technique for the characterization of microstructure in additive materials
,”
J. Acoust. Soc. Am.
149
,
158
166
(
2021
).
26.
D.
Cerniglia
,
M.
Scafidi
,
A.
Pantano
, and
J.
Rudlin
, “
Inspection of additive-manufactured layered components
,”
Ultrasonics
62
,
292
298
(
2015
).
27.
P.
Dryburgh
,
D.
Pieris
,
F.
Martina
,
R.
Patel
,
S.
Sharples
,
W.
Li
,
A. T.
Clare
,
S.
Williams
, and
R. J.
Smith
, “
Spatially resolved acoustic spectroscopy for integrity assessment in wire–arc additive manufacturing
,”
Addit. Manuf.
28
,
236
251
(
2019
).
28.
H.
Rieder
,
A.
Dillhöfer
,
M.
Spies
,
J.
Bamberg
, and
T.
Hess
, “
Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting
,”
AIP Conf. Proc.
1650
,
184
191
(
2015
).
29.
H.
Rieder
,
M.
Spies
,
J.
Bamberg
, and
B.
Henkel
, “
On- and offline ultrasonic characterization of components built by SLM additive manufacturing
,”
AIP Conf. Proc.
1706
,
130002
(
2016
).
30.
L. W.
Koester
,
H.
Taheri
,
T. A.
Bigelow
,
L. J.
Bond
, and
E. J.
Faierson
, “
In-situ acoustic signature monitoring in additive manufacturing processes
,”
AIP Conf. Proc.
1949
,
020006
(
2018
).
31.
H.
Taheri
,
L. W.
Koester
,
T. A.
Bigelow
,
E. J.
Faierson
, and
L. J.
Bond
, “
In situ additive manufacturing process monitoring with an acoustic technique: Clustering performance evaluation using K-means algorithm
,”
J. Manuf. Sci. Eng.
141
,
418
444
(
2019
).
32.
Y.
Plotnikov
,
D.
Henkel
,
J.
Burdick
,
A.
French
,
J.
Sions
, and
K.
Bourne
, “
Infrared-assisted acoustic emission process monitoring for additive manufacturing
,”
Rev. Prog. Quant. Nondestr. Eval.
38
,
020006
(
2019
).
33.
V. K.
Nadimpalli
,
L.
Yang
, and
P. B.
Nagy
, “
In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE
,”
NDT E Int.
93
,
117
130
(
2018
).
34.
V. K.
Nadimpalli
,
G. M.
Karthik
,
G. D.
Janakiram
, and
P. B.
Nagy
, “
Monitoring and repair of defects in ultrasonic additive manufacturing
,”
Int. J. Adv. Manuf. Technol.
108
,
1793
1810
(
2020
).
35.
A.
Chabot
,
N.
Laroche
,
E.
Carcreff
,
M.
Rauch
, and
J.-Y.
Hascoët
, “
Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing
,”
J. Intell. Manuf.
31
,
1191
1201
(
2020
).
36.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH Image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
675
(
2012
).
37.
A.
Dass
and
A.
Moridi
, “
State of the art in directed energy deposition: From additive manufacturing to materials design
,”
Coatings
9
,
(041011)1
11
(
2019
).
38.
A.
Spierings
,
M.
Schneider
, and
R.
Eggenberger
, “
Comparison of density measurement techniques for additive manufactured metallic parts
,”
Rapid Prototyping J.
17
,
380
386
(
2011
).
39.
J. J.
Lewandowski
and
M.
Seifi
, “
Metal additive manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
46
,
151
186
(
2016
).
40.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0008972 for a video showing the machining and additive steps of the sample manufacturing.
41.
F.
Lia
,
J. Z.
Park
,
J. S.
Keist
,
S.
Joshi
, and
R. P.
Martukanitz
, “
Thermal and microstructural analysis of laser-based directed energy deposition for Ti-6Al-4V and Inconel 625 deposits
,”
Mater. Sci. Eng.: A
717
,
1
10
(
2018
).
42.
H.
Ogi
,
S.
Kai
,
H.
Ledbetter
,
R.
Tarumi
,
M.
Hirao
, and
K.
Takashima
, “
Titanium's high-temperature elastic constants through the hcp–bcc phase transformation
,”
Act. Mater.
52
,
2075
2080
(
2004
).
43.
J.
Li
,
W.
Johnson
, and
W.-K.
Rhim
, “
Thermal expansion of liquid Ti-6AI-4V measured by electrostatic levitation
,”
Appl. Phys. Lett.
89
,
111913
(
2006
).
44.
X.
Li
,
X.
Han
,
A. P.
Arguelles
,
Y.
Song
, and
H.
Hu
, “
Evaluating grain size in polycrystals with rough surfaces by corrected ultrasonic attenuation
,”
Ultrasonics
78
,
23
29
(
2017
).
45.
M.
Treiber
,
J.-Y.
Kim
,
L. J.
Jacobs
, and
J.
Qu
, “
Correction for partial reflection in ultrasonic attenuation measurements using contact transducers
,”
J. Acoust. Soc. Am.
125
,
2946
2953
(
2009
).

Supplementary Material

You do not currently have access to this content.