Parabolized stability equations (PSE) have been shown to model wavepackets and, consequently, the near-field of turbulent jets with reasonable accuracy. In this work, PSE were employed to obtain a reduced-order model that could estimate both the fluid-dynamic and the acoustic fields of a supersonic jet in a computationally efficient approximation for resolvent-based estimation based on a single input. From the unsteady pressure data at an input position, the time-domain pressure field was estimated using transfer functions obtained using PSE and a data-driven method based on a well-validated large-eddy simulation (LES). The prediction scheme employed is a single-input single-output, linear model. The unsteady pressure predicted by the PSE showed good agreement with the LES results, especially if the input position is outside the mixing layer, where the prediction capabilities of the PSE are comparable to those of the data-driven transfer functions. The good agreement indicates that PSE could not only be used to predict the sound generation but also to open up different potentialities to attenuate the noise by flow control. The exploration of the regions where the method displayed good agreement, which are presented in this work, can guide the positioning of the sensors for experimental implementation of closed-loop control in a jet.

1.
Akamine
,
M.
,
Okamoto
,
K.
,
Teramoto
,
S.
, and
Tsutsumi
,
S.
(
2019
). “
Conditional sampling analysis of high-speed Schlieren movies of Mach wave radiation in a supersonic jet
,”
J. Acoust. Soc. Am.
145
(
1
),
EL122
EL128
.
2.
Amaral
,
F.
,
Cavalieri
,
A.
,
Martini
,
E.
,
Jordan
,
P.
, and
Towne
,
A.
(
2021
). “
Resolvent-based estimation of turbulent channel flow using wall measurements
,”
J. Fluid Mech.
927
,
A17
.
3.
Antonialli
,
L. A.
,
Cavalieri
,
A. V.
,
Schmidt
,
O. T.
,
Colonius
,
T.
,
Jordan
,
P.
,
Towne
,
A.
, and
Brès
,
G. A.
(
2021
). “
Amplitude scaling of wave packets in turbulent jets
,”
AIAA J.
59
(
2
),
559
568
.
4.
Bendat
,
J. S.
, and
Piersol
,
A. G.
(
2011
).
Random Data: Analysis and Measurement Procedures
(
Wiley
,
Hoboken, New Jersey
), p.
173
177
.
5.
Beneddine
,
S.
,
Sipp
,
D.
,
Arnault
,
A.
,
Dandois
,
J.
, and
Lesshafft
,
L.
(
2016
). “
Conditions for validity of mean flow stability analysis
,”
J. Fluid Mech.
798
,
485
504
.
6.
Boyd
,
J. P.
(
2001
).
Chebyshev and Fourier Spectral Methods
, 2nd ed. (
Dover
,
Mineola, NY
).
7.
Breakey
,
D. E.
,
Jordan
,
P.
,
Cavalieri
,
A. V.
,
Nogueira
,
P. A.
,
Léon
,
O.
,
Colonius
,
T.
, and
Rodríguez
,
D.
(
2017
). “
Experimental study of turbulent-jet wave packets and their acoustic efficiency
,”
Phys. Rev. Fluids
2
(
12
),
124601
.
8.
Brès
,
G. A.
,
Ham
,
F. E.
,
Nichols
,
J. W.
, and
Lele
,
S. K.
(
2017
). “
Unstructured large-eddy simulations of supersonic jets
,”
AIAA J.
55
(
4
),
1164
1184
.
9.
Cavalieri
,
A. V.
, and
Agarwal
,
A.
(
2014
). “
Coherence decay and its impact on sound radiation by wavepackets
,”
J. Fluid Mech.
748
,
399
415
.
10.
Cavalieri
,
A. V.
,
Jordan
,
P.
, and
Lesshafft
,
L.
(
2019
). “
Wave-packet models for jet dynamics and sound radiation
,”
Appl. Mech. Rev.
71
(
2
),
020802
.
11.
Cavalieri
,
A. V.
,
Rodríguez
,
D.
,
Jordan
,
P.
,
Colonius
,
T.
, and
Gervais
,
Y.
(
2013
). “
Wavepackets in the velocity field of turbulent jets
,”
J. Fluid Mech.
730
,
559
592
.
12.
Colonius
,
T.
, and
Lele
,
S. K.
(
2004
). “
Computational aeroacoustics: Progress on nonlinear problems of sound generation
,”
Prog. Aerosp. Sci.
40
(
6
),
345
416
.
13.
Crighton
,
D.
, and
Gaster
,
M.
(
1976
). “
Stability of slowly diverging jet flow
,”
J. Fluid Mech.
77
(
02
),
397
413
.
14.
Gudmundsson
,
K.
, and
Colonius
,
T.
(
2011
). “
Instability wave models for the near-field fluctuations of turbulent jets
,”
J. Fluid Mech.
689
,
97
128
.
15.
Herbert
,
T.
(
1997
). “
Parabolized stability equations
,”
Annu. Rev. Fluid Mech.
29
(
1
),
245
283
.
16.
Hwang
,
Y.
, and
Cossu
,
C.
(
2010
). “
Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow
,”
J. Fluid Mech.
664
,
51
73
.
17.
Jaunet
,
V.
,
Jordan
,
P.
, and
Cavalieri
,
A.
(
2017
). “
Two-point coherence of wave packets in turbulent jets
,”
Phys. Rev. Fluids
2
(
2
),
024604
.
18.
Lesshafft
,
L.
,
Semeraro
,
O.
,
Jaunet
,
V.
,
Cavalieri
,
A. V.
, and
Jordan
,
P.
(
2019
). “
Resolvent-based modeling of coherent wave packets in a turbulent jet
,”
Phys. Rev. Fluids
4
(
6
),
063901
.
19.
Li
,
F.
, and
Malik
,
M. R.
(
1997
). “
Spectral analysis of parabolized stability equations
,”
Comput. Fluids
26
(
3
),
279
297
.
20.
Maia
,
I.
,
Jordan
,
P.
,
Martini
,
E.
,
Cavalieri
,
A. V.
,
Towne
,
A.
,
Lesshafft
,
L.
, and
Schmidt
,
O. T.
(
2019
). “
Real-time estimation in a turbulent jet using multiple-input-multiple-output transfer functions
,” in
25th AIAA/CEAS Aeroacoustics Conference
, p.
2535
.
21.
Maia
,
I. A.
,
Jordan
,
P.
,
Cavalieri
,
A. V.
,
Martini
,
E.
,
Sasaki
,
K.
, and
Silvestre
,
F.
(
2021
). “
Real-time reactive control of stochastic disturbances in forced turbulent jets
,”
Physical Review Fluids
6
(
12
),
123901
.
22.
Malik
,
M.
, and
Chang
,
C.-L.
(
2000
). “
Nonparallel and nonlinear stability of supersonic jet flow
,”
Comput. Fluids
29
(
3
),
327
365
.
23.
Mancinelli
,
M.
, and
Camussi
,
R.
(
2018
). “
Acceleration and wall pressure fluctuations generated by an incompressible jet in installed configuration
,”
C. R. Méc.
346
(
10
),
919
931
.
24.
Martini
,
E.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Towne
,
A.
, and
Lesshafft
,
L.
(
2020
). “
Resolvent-based optimal estimation of transitional and turbulent flows
,”
J. Fluid Mech.
900
,
A2
.
25.
McKeon
,
B.
(
2017
). “
The engine behind (wall) turbulence: Perspectives on scale interactions
,”
J. Fluid Mech.
817
,
P1
.
26.
McKeon
,
B.
, and
Sharma
,
A.
(
2010
). “
A critical-layer framework for turbulent pipe flow
,”
J. Fluid Mech.
658
,
336
382
.
27.
Mohseni
,
K.
, and
Colonius
,
T.
(
2000
). “
Numerical treatment of polar coordinate singularities
,”
J. Comput. Phys.
157
(
2
),
787
795
.
28.
Rigas
,
G.
,
Schmidt
,
O. T.
,
Colonius
,
T.
, and
Bres
,
G. A.
(
2017
). “
One way Navier-Stokes and resolvent analysis for modeling coherent structures in a supersonic turbulent jet
,” in
23rd AIAA/CEAS Aeroacoustics Conference
, p.
4046
.
29.
Rocklin
,
G. T.
,
Crowley
,
J.
, and
Vold
,
H.
(
1985
). “
A comparison of h1, h2, and hv frequency response functions
,” in
Proceedings of the 3rd International Modal Analysis Conference
, Vol.
1
, pp.
272
278
.
30.
Rodríguez
,
D.
,
Cavalieri
,
A. V.
,
Colonius
,
T.
, and
Jordan
,
P.
(
2015
). “
A study of linear wavepacket models for subsonic turbulent jets using local eigenmode decomposition of PIV data
,”
Eur. J. Mech. B: Fluids
49
,
308
321
.
31.
Sasaki
,
K.
(
2014
). “
Estudo e controle de pacotes de onda em jatos utilizando as equações de estabilidade parabolizadas” (“Study and control of wavepackets in jets using the parabolized stability equations”)
, Master's thesis,
Instituto Tecnológico de Aeronáutica
(in Portuguese).
32.
Sasaki
,
K.
,
Cavalieri
,
A. V.
,
Jordan
,
P.
,
Schmidt
,
O. T.
,
Colonius
,
T.
, and
Brès
,
G. A.
(
2017a
). “
High-frequency wavepackets in turbulent jets
,”
J. Fluid Mech.
830
,
R2
.
33.
Sasaki
,
K.
,
Piantanida
,
S.
,
Cavalieri
,
A. V. G.
, and
Jordan
,
P.
(
2017b
). “
Real-time modelling of wavepackets in turbulent jets
,”
J. Fluid Mech.
821
,
458
481
.
34.
Sasaki
,
K.
,
Tissot
,
G.
,
Cavalieri
,
A. V.
,
Silvestre
,
F. J.
,
Jordan
,
P.
, and
Biau
,
D.
(
2018
). “
Closed-loop control of a free shear flow: A framework using the parabolized stability equations
,”
Theor. Comput. Fluid Dyn.
32
(
6
),
765
788
.
35.
Sasaki
,
K.
,
Vinuesa
,
R.
,
Cavalieri
,
A. V.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
(
2019
). “
Transfer functions for flow predictions in wall-bounded turbulence
,”
J. Fluid Mech.
864
,
708
745
.
36.
Schmidt
,
O. T.
,
Towne
,
A.
,
Rigas
,
G.
,
Colonius
,
T.
, and
Brès
,
G. A.
(
2018
). “
Spectral analysis of jet turbulence
,”
J. Fluid Mech.
855
,
953
982
.
37.
Sinha
,
A.
,
Rodríguez
,
D.
,
Brès
,
G. A.
, and
Colonius
,
T.
(
2014
). “
Wavepacket models for supersonic jet noise
,”
J. Fluid Mech.
742
,
71
95
.
38.
Soares
,
L. F.
,
Cavalieri
,
A. V.
,
Kopiev
,
V.
, and
Faranosov
,
G.
(
2020
). “
Flight effects on turbulent-jet wave packets
,”
AIAA J.
58
(
9
),
3877
3888
.
39.
Suzuki
,
T.
, and
Colonius
,
T.
(
2006
). “
Instability waves in a subsonic round jet detected using a near-field phased microphone array
,”
J. Fluid Mech.
565
,
197
226
.
40.
Tam
,
C. K.
(
2009
). “
Mach wave radiation from high-speed jets
,”
AIAA J.
47
(
10
),
2440
2448
.
41.
Tam
,
C. K.
, and
Burton
,
D. E.
(
1984
). “
Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets
,”
J. Fluid Mech.
138
,
273
295
.
42.
Tinney
,
C.
, and
Jordan
,
P.
(
2008
). “
The near pressure field of co-axial subsonic jets
,”
J. Fluid Mech.
611
,
175
204
.
43.
Towne
,
A.
,
Lozano-Durán
,
A.
, and
Yang
,
X.
(
2020
). “
Resolvent-based estimation of space-time flow statistics
,”
J. Fluid Mech.
883
,
A17
.
44.
Towne
,
A.
,
Rigas
,
G.
, and
Colonius
,
T.
(
2019
). “
A critical assessment of the parabolized stability equations
,”
Theor. Comput. Fluid Dyn.
33
(
3-4
),
359
382
.
You do not currently have access to this content.