The influence of the compressibility effects is discussed, including the time delays on the dynamics of acoustically excited bubbly screens. In the linear regime, it is shown that the proposed model for the infinite bubbly screen recovers the results predicted by the effective medium theory (EMT) up to the second order without introducing any fitting parameter when the wavelength is large compared to the inter-bubble distance. However, the effect of boundaries on the finite bubbly screens is shown to lead to the appearance of multiple local resonances and characteristic periodic structures, which limit the applicability of the EMT. In addition, a local resonance phenomenon in the liquid spacings between the bubbles is observed for both the infinite and finite bubbly screens with crystal structures, and these effects vanish as the crystal structure is perturbed. In the nonlinear regime, the current model is treated with time-delay effects as a delay differential equation, which is directly solved numerically. The appearance of an optimal distance for the subharmonic emission for the crystal structures is shown, and the accuracy of the EMT in the strong nonlinear regime is discussed.

1.
Andersen
,
K. S.
, and
Jensen
,
J. A.
(
2009
). “
Ambient pressure sensitivity of microbubbles investigated through a parameter study
,”
J. Acoust. Soc. Am.
126
(
6
),
3350
3358
.
2.
Bellen
,
A.
, and
Zennaro
,
M.
(
2013
).
Numerical Methods for Delay Differential Equations
(
Oxford University Press
,
Oxford, UK
).
3.
Bergamasco
,
L.
, and
Fuster
,
D.
(
2017
). “
Oscillation regimes of gas/vapor bubbles
,”
Int. J. Heat Mass Transfer
112
,
72
80
.
4.
Bremond
,
N.
,
Arora
,
M.
,
Ohl
,
C.-D.
, and
Lohse
,
D.
(
2006
). “
Controlled multibubble surface cavitation
,”
Phys. Rev. Lett.
96
(
22
),
224501
.
5.
Caflisch
,
R. E.
,
Miksis
,
M. J.
,
Papanicolaou
,
G. C.
, and
Ting
,
L.
(
1985
). “
Effective equations for wave propagation in bubbly liquids
,”
J. Fluid Mech.
153
,
259
273
.
6.
Commander
,
K. W.
, and
Prosperetti
,
A.
(
1989
). “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
(
2
),
732
746
.
7.
Coussios
,
C. C.
, and
Roy
,
R. A.
(
2008
). “
Applications of acoustics and cavitation to noninvasive therapy and drug delivery
,”
Annu. Rev. Fluid Mech.
40
,
395
420
.
8.
Dahl
,
P. H.
, and
Kapodistrias
,
G.
(
2003
). “
Scattering from a single bubble near a roughened air–water interface: Laboratory measurements and modeling
,”
J. Acoust. Soc. Am.
113
(
1
),
94
101
.
9.
Devaud
,
M.
,
Hocquet
,
T.
, and
Leroy
,
V.
(
2010
). “
Sound propagation in a monodisperse bubble cloud: From the crystal to the glass
,”
Eur. Phys. J. E
32
(
1
),
13
23
.
10.
Doinikov
,
A. A.
,
Manasseh
,
R.
, and
Ooi
,
A.
(
2005
). “
Time delays in coupled multibubble systems (L)
,”
J. Acoust. Soc. Am.
117
(
1
),
47
50
.
11.
Faez
,
T.
,
Emmer
,
M.
,
Kooiman
,
K.
,
Versluis
,
M.
,
van der Steen
,
A. F.
, and
de Jong
,
N.
(
2012
). “
20 years of ultrasound contrast agent modeling
,”
IEEE Trans. Sonics Ultrason., Ferroelectr. Freq. Control
60
(
1
),
7
20
.
12.
Fan
,
Y.
,
Li
,
H.
, and
Fuster
,
D.
(
2020a
). “
Optimal subharmonic emission of stable bubble oscillations in a tube
,”
Phys. Rev. E
102
(
1
),
013105
. https://ieeexplore.ieee.org/document/6396482
13.
Fan
,
Y.
,
Li
,
H.
,
Zhu
,
J.
, and
Du
,
W.
(
2020b
). “
A simple model of bubble cluster dynamics in an acoustic field
,”
Ultrason. Sonochem.
64
,
104790
.
14.
Foldy
,
L. L.
(
1945
). “
The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers
,”
Phys. Rev.
67
(
3-4
),
107
119
.
15.
Fuster
,
D.
(
2019
). “
A review of models for bubble clusters in cavitating flows
,”
Flow, Turbul. Combust.
102
(
3
),
497
536
.
16.
Fuster
,
D.
, and
Colonius
,
T.
(
2011
). “
Modelling bubble clusters in compressible liquids
,”
J. Fluid Mech.
688
,
352
389
.
17.
Fuster
,
D.
, and
Montel
,
F.
(
2015
). “
Mass transfer effects on linear wave propagation in diluted bubbly liquids
,”
J. Fluid Mech.
779
,
598
621
.
18.
Gilmore
,
F. R.
(
1952
). “
The growth or collapse of a spherical bubble in a viscous compressible liquid
,”
Report No. 26-4, Hydrodynamics Laboratory
,
California Institute of Technology
,
Pasadena, CA
.
19.
Halldorsdottir
,
V. G.
,
Dave
,
J. K.
,
Leodore
,
L. M.
,
Eisenbrey
,
J. R.
,
Park
,
S.
,
Hall
,
A. L.
,
Thomenius
,
K.
, and
Forsberg
,
F.
(
2011
). “
Subharmonic contrast microbubble signals for noninvasive pressure estimation under static and dynamic flow conditions
,”
Ultrason. Imaging
33
(
3
),
153
164
.
20.
Ida
,
M.
,
Naoe
,
T.
, and
Futakawa
,
M.
(
2007
). “
Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction
,”
Phys. Rev. E
76
(
4
),
046309
.
21.
Ilinskii
,
Y. A.
,
Hamilton
,
M. F.
, and
Zabolotskaya
,
E. A.
(
2007
). “
Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics
,”
J. Acoust. Soc. Am.
121
(
2
),
786
795
.
22.
Katiyar
,
A.
, and
Sarkar
,
K.
(
2011
). “
Excitation threshold for subharmonic generation from contrast microbubbles
,”
J. Acoust. Soc. Am.
130
(
5
),
3137
3147
.
23.
Keller
,
J. B.
, and
Miksis
,
M.
(
1980
). “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
(
2
),
628
633
.
24.
Lauterborn
,
W.
, and
Cramer
,
E.
(
1981
). “
Subharmonic route to chaos observed in acoustics
,”
Phys. Rev. Lett.
47
(
20
),
1445
1448
.
25.
Lauterborn
,
W.
, and
Koch
,
A.
(
1987
). “
Holographic observation of period-doubled and chaotic bubble oscillations in acoustic cavitation
,”
Phys. Rev. A
35
(
4
),
1974
1976
.
26.
Lauterborn
,
W.
, and
Kurz
,
T.
(
2010
). “
Physics of bubble oscillations
,”
Rep. Prog. Phys.
73
(
10
),
106501
.
27.
Leroy
,
V.
,
Strybulevych
,
A.
,
Lanoy
,
M.
,
Lemoult
,
F.
,
Tourin
,
A.
, and
Page
,
J. H.
(
2015
). “
Superabsorption of acoustic waves with bubble metascreens
,”
Phys. Rev. B
91
(
2
),
020301
.
28.
Leroy
,
V.
,
Strybulevych
,
A.
,
Scanlon
,
M.
, and
Page
,
J.
(
2009
). “
Transmission of ultrasound through a single layer of bubbles
,”
Eur. Phys. J. E
29
(
1
),
123
130
.
29.
Lohse
,
D.
(
2018
). “
Bubble puzzles: From fundamentals to applications
,”
Phys. Rev. Fluids
3
(
11
),
110504
.
30.
Lombard
,
O.
,
Barrière
,
C.
, and
Leroy
,
V.
(
2015
). “
Nonlinear multiple scattering of acoustic waves by a layer of bubbles
,”
Europhys. Lett.
112
(
2
),
24002
.
31.
Maeda
,
K.
, and
Colonius
,
T.
(
2019
). “
Bubble cloud dynamics in an ultrasound field
,”
J. Fluid Mech.
862
,
1105
1134
.
32.
Manasseh
,
R.
,
Nikolovska
,
A.
,
Ooi
,
A.
, and
Yoshida
,
S.
(
2004
). “
Anisotropy in the sound field generated by a bubble chain
,”
J. Sound Vib.
278
(
4-5
),
807
823
.
33.
Mettin
,
R.
,
Akhatov
,
I.
,
Parlitz
,
U.
,
Ohl
,
C.
, and
Lauterborn
,
W.
(
1997
). “
Bjerknes forces between small cavitation bubbles in a strong acoustic field
,”
Phys. Rev. E
56
(
3
),
2924
2931
.
34.
Miksis
,
M. J.
, and
Ting
,
L.
(
1989
). “
Effects of bubbly layers on wave propagation
,”
J. Acoust. Soc. Am.
86
(
6
),
2349
2358
.
35.
Nio
,
A. Q.
,
Faraci
,
A.
,
Christensen-Jeffries
,
K.
,
Raymond
,
J. L.
,
Monaghan
,
M. J.
,
Fuster
,
D.
,
Forsberg
,
F.
,
Eckersley
,
R. J.
, and
Lamata
,
P.
(
2020
). “
Optimal control of sonovue microbubbles to estimate hydrostatic pressure
,”
IEEE Trans. Sonics Ultrason., Ferroelectr. Freq. Control
67
(
3
),
557
567
.
36.
Okita
,
K.
,
Sugiyama
,
K.
,
Takagi
,
S.
, and
Matsumto
,
Y.
(
2013
). “
Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement
,”
J. Acoust. Soc. Am.
134
(
2
),
1576
1585
.
37.
Ooi
,
A.
,
Nikolovska
,
A.
, and
Manasseh
,
R.
(
2008
). “
Analysis of time delay effects on a linear bubble chain system
,”
J. Acoust. Soc. Am.
124
(
2
),
815
826
.
38.
Pham
,
K.
,
Mercier
,
J.-F.
,
Fuster
,
D.
,
Marigo
,
J.-J.
, and
Maurel
,
A.
(
2021
). “
Scattering of acoustic waves by a nonlinear resonant bubbly screen
,”
J. Fluid Mech.
906
,
A19
.
39.
Prosperetti
,
A.
, and
Lezzi
,
A.
(
1986
). “
Bubble dynamics in a compressible liquid. Part 1. First-order theory
,”
J. Fluid Mech.
168
,
457
478
.
40.
Shampine
,
L.
(
2005
). “
Solving ODEs and DDEs with residual control
,”
Appl. Numer. Math.
52
(
1
),
113
127
.
41.
Shampine
,
L. F.
(
2008
). “
Dissipative approximations to neutral ddes
,”
Appl. Math. Comput.
203
(
2
),
641
648
.
42.
Sujarittam
,
K.
, and
Choi
,
J. J.
(
2020
). “
Angular dependence of the acoustic signal of a microbubble cloud
,”
J. Acoust. Soc. Am.
148
(
5
),
2958
2972
.
43.
van't Wout
,
E.
, and
Feuillade
,
C.
(
2021
). “
Proximity resonances of water-entrained air bubbles near acoustically reflecting boundaries
,”
J. Acoust. Soc. Am.
149
(
4
),
2477
2491
.
44.
Yasui
,
K.
,
Iida
,
Y.
,
Tuziuti
,
T.
,
Kozuka
,
T.
, and
Towata
,
A.
(
2008
). “
Strongly interacting bubbles under an ultrasonic horn
,”
Phys. Rev. E
77
(
1
),
016609
.
45.
Ye
,
Z.
, and
Feuillade
,
C.
(
1997
). “
Sound scattering by an air bubble near a plane sea surface
,”
J. Acoust. Soc. Am.
102
(
2
),
798
805
.
You do not currently have access to this content.