Two residual networks are implemented to perform regression for the source localization and environment classification using a moving mid-frequency source, recorded during the Seabed Characterization Experiment in 2017. The first model implements only the classification for inferring the seabed type, and the second model uses regression to estimate the source localization parameters. The training is performed using synthetic data generated by the ORCA normal mode model. The architectures are tested on both the measured field and simulated data with variations in the sound speed profile and seabed mismatch. Additionally, nine data augmentation techniques are implemented to study their effect on the network predictions. The metrics used to quantify the network performance are the root mean square error for regression and accuracy for seabed classification. The models report consistent results for the source localization estimation and accuracy above 65% in the worst-case scenario for the seabed classification. From the data augmentation study, the results show that the more complex transformations, such as time warping, time masking, frequency masking, and a combination of these techniques, yield significant improvement of the results using both the simulated and measured data.

1.
M.
Siderius
,
P. L.
Nielsen
,
J.
Sellschopp
,
M.
Snellen
, and
D.
Simons
, “
Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations
,”
J. Acoust. Soc. Am.
110
(
2
),
769
781
(
2001
).
2.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
(
4598
),
671
680
(
1983
).
3.
S.
Kirkpatrick
, “
Optimization by simulated annealing: Quantitative studies
,”
J. Stat. Phys.
34
(
5-6
),
975
986
(
1984
).
4.
Z.-H.
Michalopoulou
, “
Gibbs sampling optimization in underwater sound problems
,” in
Conference Proceedings of MTS/IEEE Oceans 2001. An Ocean Odyssey
(
IEEE
,
Honolulu, HI
,
2001
), Vol.
2
, pp.
782
785
.
5.
G. L.
Bilbro
and
D. E.
Van den Bout
, “
Maximum entropy and learning theory
,”
Neural Comput.
4
(
6
),
839
853
(
1992
).
6.
S. E.
Dosso
and
M. J.
Wilmut
, “
Bayesian focalization: Quantifying source localization with environmental uncertainty
,”
J. Acoust. Soc. Am.
121
(
5
),
2567
2574
(
2007
).
7.
A. B.
Baggeroer
,
W. A.
Kuperman
, and
H.
Schmidt
, “
Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem
,”
J. Acoust. Soc. Am.
83
(
2
),
571
587
(
1988
).
8.
M. B.
Porter
and
A.
Tolstoy
, “
The matched field processing benchmark problems
,”
J. Comput. Acoust.
02
(
03
),
161
185
(
1994
).
9.
E. K.
Westwood
and
D. P.
Knobles
, “
Source track localization via multipath correlation matching
,”
J. Acoust. Soc. Am.
102
(
5
),
2645
2654
(
1997
).
10.
M. S.
Ballard
, “
Estimation of source range using horizontal multipath in continental shelf environments
,”
J. Acoust. Soc. Am.
134
(
4
),
EL340
EL344
(
2013
).
11.
C.
Cho
,
H. C.
Song
, and
W. S.
Hodgkiss
, “
Robust source-range estimation using the array/waveguide invariant and a vertical array
,”
J. Acoust. Soc. Am.
139
(
1
),
63
69
(
2016
).
12.
C.
Cho
and
H.-C.
Song
, “
Impact of array tilting on source-range estimation based on the array/waveguide invariant
,”
J. Acoust. Soc. Am.
140
(
4
),
3172
(
2016
).
13.
A.
Kujawski
,
G.
Herold
, and
E.
Sarradj
, “
A deep learning method for grid-free localization and quantification of sound sources
,”
J. Acoust. Soc. Am.
146
(
3
),
EL225
EL231
(
2019
).
14.
Y.
Liu
,
H.
Niu
, and
Z.
Li
, “
A multi-task learning convolutional neural network for source localization in deep ocean
,”
J. Acoust. Soc. Am.
148
(
2
),
873
883
(
2020
).
15.
Y.
Liu
,
H.
Niu
,
Z.
Li
, and
M.
Wang
, “
Deep-learning source localization using autocorrelation functions from a single hydrophone in deep ocean
,”
JASA Express Lett.
1
(
3
),
036002
(
2021
).
16.
D. F.
Van Komen
,
T. B.
Neilsen
,
D. B.
Mortenson
,
M. C.
Acree
,
D. P.
Knobles
,
M.
Badiey
, and
W. S.
Hodgkiss
, “
Seabed type and source parameters predictions using ship spectrograms in convolutional neural networks
,”
J. Acoust. Soc. Am.
149
(
2
),
1198
1210
(
2021
).
17.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
2016
), pp.
770
778
.
18.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
(
7553
),
436
444
(
2015
).
19.
L.
Deng
and
D.
Yu
, “
Deep learning: Methods and applications
,”
Found. Trends Signal Process.
7
(
3–4
),
197
387
(
2014
).
20.
I.
Goodfellow
,
Y.
Bengio
,
A.
Courville
, and
Y.
Bengio
,
Deep Learning
(
MIT Press
,
Cambridge
,
2016
).
21.
Y.
LeCun
,
K.
Kavukcuoglu
, and
C.
Farabet
, “
Convolutional networks and applications in vision
,” in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems
,
Paris, France
(
IEEE
,
2010
), pp.
253
256
.
22.
H.
Liang
,
X.
Sun
,
Y.
Sun
, and
Y.
Gao
, “
Text feature extraction based on deep learning: A review
,”
EURASIP J. Wireless Commun. Network.
2017
(
1
),
1
12
(
2017
).
23.
Y.
Chen
,
Z.
Lin
,
X.
Zhao
,
G.
Wang
, and
Y.
Gu
, “
Deep learning-based classification of hyperspectral data
,”
IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
7
(
6
),
2094
2107
(
2014
).
24.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
,” in
Proceedings of the IEEE International Conference on Computer Vision
(
2015
), pp.
1026
1034
.
25.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” arXiv:1502.03167 (
2015
).
26.
K.
Simonyan
and
A.
Zisserman
, “
Very deep convolutional networks for large-scale image recognition
,” arXiv:1409.1556 (
2014
).
27.
C.
Szegedy
,
W.
Liu
,
Y.
Jia
,
P.
Sermanet
,
S.
Reed
,
D.
Anguelov
,
D.
Erhan
,
V.
Vanhoucke
, and
A.
Rabinovich
, “
Going deeper with convolutions
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
2015
), pp.
1
9
.
28.
A. M.
Saxe
,
J. L.
McClelland
, and
S.
Ganguli
, “
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
,” arXiv:1312.6120 (
2013
).
29.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
2010
), pp.
249
256
.
30.
P. Y.
Simard
,
Y. A.
LeCun
,
J. S.
Denker
, and
B.
Victorri
, “
Transformation invariance in pattern recognition–tangent distance and tangent propagation
,” in
Neural Networks: Tricks of the Trade
, edited by
G.
Montavon
,
G. B.
Orr
, and
K.-R.
Müller
(
Springer
,
Berlin, Heidelberg
,
1998
), pp.
239
274
.
31.
L.
Perez
and
J.
Wang
, “
The effectiveness of data augmentation in image classification using deep learning
,” arXiv:1712.04621 (
2017
).
32.
J.
Wei
and
K.
Zou
, “
EDA: Easy data augmentation techniques for boosting performance on text classification tasks
,” arXiv:1901.11196 (
2019
).
33.
Z.
Hussain
,
F.
Gimenez
,
D.
Yi
, and
D.
Rubin
, “
Differential data augmentation techniques for medical imaging classification tasks
,” in
AMIA Annual Symposium Proceedings
(
American Medical Informatics Association
,
Washington, DC
,
2017
), Vol.
2017
, p.
979
.
34.
D. S.
Park
,
W.
Chan
,
Y.
Zhang
,
C.-C.
Chiu
,
B.
Zoph
,
E. D.
Cubuk
, and
Q. V.
Le
, “
Specaugment: A simple data augmentation method for automatic speech recognition
,” arXiv:1904.08779 (
2019
).
35.
A.
Sakai
,
Y.
Minoda
, and
K.
Morikawa
, “
Data augmentation methods for machine-learning-based classification of bio-signals
,” in
2017 10th Biomedical Engineering International Conference (BMEiCON)
(
IEEE
,
Hokkaido, Japan
,
2017
), pp.
1
4
.
36.
J.
Schlüter
and
T.
Grill
, “
Exploring data augmentation for improved singing voice detection with neural networks
,” in
ISMIR
(
2015
), pp.
121
126
.
37.
H.
Niu
,
Z.
Gong
,
E.
Ozanich
,
P.
Gerstoft
,
H.
Wang
, and
Z.
Li
, “
Deep-learning source localization using multi-frequency magnitude-only data
,”
J. Acoust. Soc. Am.
146
(
1
),
211
222
(
2019
).
38.
D. F.
Van Komen
,
T. B.
Neilsen
,
K.
Howarth
,
D. P.
Knobles
, and
P. H.
Dahl
, “
Seabed and range estimation of impulsive time series using a convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
5
),
EL403
EL408
(
2020
).
39.
C. D.
Escobar-Amado
,
T. B.
Neilsen
,
J. A.
Castro-Correa
,
D. F.
Van Komen
,
M.
Badiey
,
D. P.
Knobles
, and
W. S.
Hodgkiss
, “
Seabed classification from merchant ship-radiated noise using a physics-based ensemble of deep learning algorithms
,”
J. Acoust. Soc. Am.
150
(
2
),
1434
1447
(
2021
).
40.
M. J.
Bianco
,
P.
Gerstoft
,
J.
Traer
,
E.
Ozanich
,
M. A.
Roch
,
S.
Gannot
, and
C.-A.
Deledalle
, “
Machine learning in acoustics: Theory and applications
,”
J. Acoust. Soc. Am.
146
(
5
),
3590
3628
(
2019
).
41.
C.
Frederick
,
S.
Villar
, and
Z.-H.
Michalopoulou
, “
Seabed classification using physics-based modeling and machine learning
,”
J. Acoust. Soc. Am.
148
(
2
),
859
872
(
2020
).
42.
W.
Liu
,
Y.
Yang
,
M.
Xu
,
L.
,
Z.
Liu
, and
Y.
Shi
, “
Source localization in the deep ocean using a convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
4
),
EL314
EL319
(
2020
).
43.
T. B.
Neilsen
,
C.
Escobar-Amado
,
M. C.
Acree
,
W. S.
Hodgkiss
,
D. F.
Van Komen
,
D. P.
Knobles
,
M.
Badiey
, and
J.
Castro-Correa
, “
Learning location and seabed type from a moving mid-frequency source
,”
J. Acoust. Soc. Am.
149
(
1
),
692
705
(
2021
).
44.
P. S.
Wilson
,
D. P.
Knobles
, and
T. B.
Neilsen
, “
Guest editorial an overview of the seabed characterization experiment
,”
IEEE J. Ocean. Eng.
45
(
1
),
1
13
(
2020
).
45.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
(
1996
).
46.
D. P.
Knobles
,
R. A.
Koch
,
L. A.
Thompson
,
K. C.
Focke
, and
P. E.
Eisman
, “
Broadband sound propagation in shallow water and geoacoustic inversion
,”
J. Acoust. Soc. Am.
113
(
1
),
205
222
(
2003
).
47.
D. P.
Knobles
,
P. S.
Wilson
,
J. A.
Goff
,
L.
Wan
,
M. J.
Buckingham
,
J. D.
Chaytor
, and
M.
Badiey
, “
Maximum entropy derived statistics of sound-speed structure in a fine-grained sediment inferred from sparse broadband acoustic measurements on the New England Continental Shelf
,”
IEEE J. Ocean. Eng.
45
,
161
173
(
2020
).
48.
G. R.
Potty
,
J. H.
Miller
, and
J. F.
Lynch
, “
Inversion for sediment geoacoustic properties at the New England Bight
,”
J. Acoust. Soc. Am.
114
(
4
),
1874
1887
(
2003
).
49.
J.-X.
Zhou
,
X.-Z.
Zhang
, and
D. P.
Knobles
, “
Low-frequency geoacoustic model for the effective properties of sandy seabottoms
,”
J. Acoust. Soc. Am.
125
(
5
),
2847
2866
(
2009
).
50.
C.
Szegedy
,
S.
Ioffe
,
V.
Vanhoucke
, and
A. A.
Alemi
, “
Inception-v4, inception-ResNet and the impact of residual connections on learning
,” in
Thirty-First AAAI Conference on Artificial Intelligence
(
2017
).
51.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
(
11
),
2278
2324
(
1998
).
52.
K.
Imai
and
D. A.
Van Dyk
, “
A Bayesian analysis of the multinomial probit model using marginal data augmentation
,”
J. Econometrics
124
(
2
),
311
334
(
2005
).
53.
L.
Tóth
,
G.
Kovács
, and
D.
Van Compernolle
, “
A perceptually inspired data augmentation method for noise robust CNN acoustic models
,” in
International Conference on Speech and Computer
(
Springer
,
Leipzig, Germany
,
2018
), pp.
697
706
.
54.
C.
Shorten
and
T. M.
Khoshgoftaar
, “
A survey on image data augmentation for deep learning
,”
J. Big Data
6
(
1
),
1
48
(
2019
).
55.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
, “
Dropout: A simple way to prevent neural networks from overfitting
,”
J. Mach. Learn. Res.
15
(
56
),
1929
1958
(
2014
).
56.
Z.
Zhang
, “
Improved Adam optimizer for deep neural networks
,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS)
(
IEEE
,
Banff, AB, Canada
,
2018
), pp.
1
2
.
57.
A.
Gotmare
,
N. S.
Keskar
,
C.
Xiong
, and
R.
Socher
, “
A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation
,” arXiv:1810.13243 (
2018
).
58.
N. S.
Keskar
,
D.
Mudigere
,
J.
Nocedal
,
M.
Smelyanskiy
, and
P. T. P.
Tang
, “
On large-batch training for deep learning: Generalization gap and sharp minima
,” arXiv:1609.04836 (
2016
).
59.
I.
Kandel
and
M.
Castelli
, “
The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset
,”
ICT Express
6
(
4
),
312
315
(
2020
).
You do not currently have access to this content.