Although ultrasound cannot penetrate a tissue/air interface, it images the lung with high diagnostic accuracy. Lung ultrasound imaging relies on the interpretation of “artifacts,” which arise from the complex reverberation physics occurring at the lung surface but appear deep inside the lung. This physics is more complex and less understood than conventional B-mode imaging in which the signal directly reflected by the target is used to generate an image. Here, to establish a more direct relationship between the underlying acoustics and lung imaging, simulations are used. The simulations model ultrasound propagation and reverberation in the human abdomen and at the tissue/air interfaces of the lung in a way that allows for direct measurements of acoustic pressure inside the human body and various anatomical structures, something that is not feasible clinically or experimentally. It is shown that the B-mode images beamformed from these acoustical simulations reproduce primary clinical features that are used in diagnostic lung imaging, i.e., A-lines and B-lines, with a clear relationship to known underlying anatomical structures. Both the oblique and parasagittal views are successfully modeled with the latter producing the characteristic “bat sign,” arising from the ribs and intercostal part of the pleura. These simulations also establish a quantitative link between the percentage of fluid in exudative regions and the appearance of B-lines, suggesting that the B-mode may be used as a quantitative imaging modality.

1.
M.
Wielpütz
,
C.
Heußel
,
F.
Herth
, and
H.
Kauczor
, “
Radiological diagnosis in lung disease: Factoring treatment options into the choice of diagnostic modality
,”
Dtsch. Arztebl. Int.
111
(
11
),
181
187
(
2014
).
2.
R.
Aljondi
and
S.
Alghamdi
, “
Diagnostic value of imaging modalities for COVID-19: Scoping review
,”
J. Med. Internet Res.
22
(
8
),
e19673
(
2020
).
3.
D. A.
Lichtenstein
, “
Lung ultrasound in the critically ill
,”
Ann. Intensive Care
4
(
1
),
1
12
(
2014
).
4.
W.
Hedrick
,
D.
Hykes
, and
D.
Starchman
,
Ultrasound Physics and Instrumentation
, 4th ed. (
Elsevier Mosby
,
St. Louis, MO
,
2005
).
5.
V.
Melenovsky
,
M. J.
Andersen
,
K.
Andress
,
Y. N.
Reddy
, and
B. A.
Borlaug
, “
Lung congestion in chronic heart failure: Haemodynamic, clinical, and prognostic implications
,”
Eur. J. Heart Failure
17
(
11
),
1161
1171
(
2015
).
6.
M. H.
Miglioranza
,
L.
Gargani
,
R. T.
Sant'Anna
,
M. M.
Rover
,
V. M.
Martins
,
A.
Mantovani
,
C.
Weber
,
M. A.
Moraes
,
C. J.
Feldman
,
R. A. K.
Kalil
,
R.
Sicari
,
E.
Picano
, and
T. L. L.
Leiria
, “
Lung ultrasound for the evaluation of pulmonary congestion in outpatients
,”
JACC: Cardiovasc. Imaging
6
(
11
),
1141
1151
(
2013
).
7.
D.
Tierney
,
J.
Huelster
,
J.
Overgaard
,
M.
Plunkett
,
L.
Boland
,
C. St.
Hill
,
V.
Agboto
,
C.
Smith
,
B.
Mikel
,
B.
Weise
,
K.
Madigan
,
A.
Doshi
, and
R. R.
Melamed
, “
Comparative performance of pulmonary ultrasound, chest radiograph, and CT among patients with acute respiratory failure
,”
Crit. Care Med.
48
(
2
),
151
157
(
2020
).
8.
E.
Picano
and
P.
Pellikka
, “
Ultrasound of extravascular lung water: A new standard for pulmonary congestion
,”
Eur. Heart J.
37
(
27
),
2097
2104
(
2016
).
9.
F.
Frassi
,
A.
Pingitore
,
D.
Cialoni
, and
E.
Picano
, “
Chest sonography detects lung water accumulation in healthy elite apnea divers
,”
J. Am. Soc. Echocardiogr.
21
(
10
),
1150
1155
(
2008
).
10.
F.
Mento
,
T.
Perrone
,
V. N.
Macioce
,
F.
Tursi
,
D.
Buonsenso
,
E.
Torri
,
A.
Smargiassi
,
R.
Inchingolo
,
G.
Soldati
, and
L.
Demi
, “
On the impact of different lung ultrasound imaging protocols in the evaluation of patients affected by coronavirus disease 2019
,”
J. Ultrasound Med.
40
,
2235
2238
(
2021
).
11.
T.
Perrone
,
G.
Soldati
,
L.
Padovini
,
A.
Fiengo
,
G.
Lettieri
,
U.
Sabatini
,
G.
Gori
,
F.
Lepore
,
M.
Garolfi
,
I.
Palumbo
,
R.
Inchingolo
,
A.
Smargiassi
,
L.
Demi
,
E.
Mossolani
,
F.
Tursi
,
C.
Klersy
, and
A.
Di Sabatino
, “
A new lung ultrasound protocol able to predict worsening in patients affected by severe acute respiratory syndrome coronavirus 2 pneumonia
,”
J. Ultrasound Med.
40
,
1627
1635
(
2021
).
12.
E.
Brogi
,
E.
Bignami
,
A.
Sidoti
,
M.
Shawar
,
L.
Gargani
,
L.
Vetrugno
,
G.
Volpicelli
, and
F.
Forfori
, “
Could the use of bedside lung ultrasound reduce the number of chest x-rays in the intensive care unit?
,”
Cardiovasc. Ultrasound
15
(
1
),
23
(
2017
).
13.
Y.
Amatya
,
J.
Rupp
,
F.
Russell
,
J.
Saunders
,
B.
Bales
, and
H.
DR
, “
Diagnostic use of lung ultrasound compared to chest radiograph for suspected pneumonia in a resource-limited setting
,”
Int. J. Emerg. Med.
11
(
1
),
8
(
2018
).
14.
P.
Mayo
,
R.
Copetti
,
D.
Feller-Kopman
,
G.
Mathis
,
E.
Maury
,
S.
Mongodi
,
F.
Mojoli
,
G.
Volpicelli
, and
M.
Zanobetti
, “
Thoracic ultrasonography: A narrative review
,”
Intensive Care Med.
45
(
9
),
1200
1211
(
2019
).
15.
M.
Di Serafino
,
M.
Notaro
,
F.
Iacobellis
,
V.
Delli Paoli
,
C.
Acampora
,
S.
Ianniello
,
L.
Brunese
,
L.
Romano
, and
G.
Vallone
, “
The lung ultrasound: Facts or artifacts? In the era of COVID-19 outbreak
,”
Radiol. Med.
125
(
8
),
738
753
(
2020
).
16.
G.
Volpicelli
,
M.
Elbarbary
,
M.
Blaivas
,
D.
Lichtenstein
,
G.
Mathis
,
A.
Kirkpatrick
,
L.
Melniker
,
L.
Gargani
,
V.
Noble
,
G.
Via
,
A.
Dean
,
J.
Tsung
,
G.
Soldati
,
R.
Copetti
,
B.
Bouhemad
,
A.
Reissig
,
E.
Agricola
,
J.
Rouby
,
C.
Arbelot
,
A.
Liteplo
,
A.
Sargsyan
,
F.
Silva
,
R.
Hoppmann
,
R.
Breitkreutz
,
A.
Seibel
,
L.
Neri
,
E.
Storti
, and
T.
Petrovic
,
International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS)
, “
International evidence-based recommendations for point-of-care lung ultrasound
,”
Intensive Care Med.
38
(
4
),
577
591
(
2012
).
17.
G.
Soldati
,
M.
Demi
,
A.
Smargiassi
,
R.
Inchingolo
, and
L.
Demi
, “
The role of ultrasound lung artifacts in the diagnosis of respiratory diseases
,”
Expert Rev. Respir. Med.
13
(
2
),
163
172
(
2019
).
18.
E.
Platz
,
A. A.
Merz
,
P. S.
Jhund
,
A.
Vazir
,
R.
Campbell
, and
J. J.
McMurray
, “
Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: A systematic review
,”
Eur. J. Heart Failure
19
(
9
),
1154
1163
(
2017
).
19.
G.
Soldati
,
A.
Testa
,
F.
Silva
,
L.
Carbone
,
G.
Portale
, and
N.
Silveri
, “
Chest ultrasonography in lung contusion
,”
Chest
130
(
2
),
533
538
(
2006
).
20.
L.
Vetrugno
,
T.
Bove
,
G. M.
Guadagnin
,
D.
Orso
,
A.
Brussa
, and
G.
Volpicelli
, “
Advances in lung ultrasound in critically ill patients
,”
J. Emerg. Crit. Care Med.
3
,
32
(
2019
).
21.
A.
Reissig
and
C.
Kroegel
, “
Transthoracic sonography of diffuse parenchymal lung disease: The role of comet tail artifacts
,”
J. Ultrasound Med.
22
(
2
),
173
180
(
2003
).
22.
L.
Gargani
and
G.
Volpicelli
, “
How I do it: Lung ultrasound
,”
Cardiovasc. Ultrasound
12
,
25
(
2014
).
23.
M.
Karthika
,
D.
Wong
,
S. G.
Nair
,
L. V.
Pillai
, and
C. S.
Mathew
, “
Lung ultrasound: The emerging role of respiratory therapists
,”
Respir. Care
64
(
2
),
217
229
(
2019
).
24.
G.
Via
,
E.
Storti
,,
G.
Gulati
,
L.
Neri
,
F.
Mojoli
, and
A.
Braschi
, “
Lung ultrasound in the ICU: From diagnostic instrument to respiratory monitoring tool
,”
Minerva Anestesiol.
78
(
11
),
1282
1296
(
2012
).
25.
S.
Koenig
,
M.
Narasimhan
, and
P.
Mayo
, “
Thoracic ultrasonography for the pulmonary specialist
,”
Chest
140
(
5
),
1332
1341
(
2011
).
26.
T.-H.
Tsai
,
J.-S.
Jerng
, and
P.-C.
Yang
, “
Clinical applications of transthoracic ultrasound in chest medicine
,”
J. Med. Ultrasound
16
(
1
),
7
25
(
2008
).
27.
D.
Lichtenstein
and
Y.
Menu
, “
A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding
,”
Chest
108
(
5
),
1345
1348
(
1995
).
28.
F.
Mojoli
,
B.
Bouhemad
,
S.
Mongodi
, and
D.
Lichtenstein
, “
Lung ultrasound for critically ill patients
,”
Am. J. Respir. Crit. Care Med.
199
(
6
),
701
714
(
2019
).
29.
G.
Soldati
,
A.
Smargiassi
,
R.
Inchingolo
,
D.
Buonsenso
,
T.
Perrone
,
D.
Briganti
,
S.
Perlini
,
E.
Torri
,
A.
Mariani
,
E.
Mossolani
,
F.
Tursi
,
F.
Mento
, and
L.
Demi
, “
Proposal for international standardization of the use of lung ultrasound for patients with COVID-19: A simple, quantitative, reproducible method
,”
J. Ultrasound Med.
39
(
7
),
1413
1419
(
2020
).
30.
F. M.
Neto
,
A. J.
Rahal
,
F.
Vieira
,
P.
Silva
, and
M.
Funari
, “
Advances in lung ultrasound
,”
Einstein
14
(
3
),
443
448
(
2016
).
31.
R.
Copetti
,
G.
Soldati
, and
P.
Copetti
, “
Chest sonography: A useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome
,”
Cardiovasc. Ultrasound
6
,
6
16
(
2008
).
32.
A.
Saraogi
, “
Lung ultrasound: Present and future
,”
Lung India
32
(
3
),
250
257
(
2015
).
33.
J.
Cardenas-Garcia
,
P.
Mayo
, and
E.
Folch
, “
Ultrasonographic evaluation of the pleura
,”
PLEURA
2
,
1
11
(
2015
).
34.
A.
Goffi
,
R.
Kruisselbrink
, and
G.
Volpicelli
, “
The sound of air: Point-of-care lung ultrasound in perioperative medicine
,”
Can. J. Anesth./J. Can. Anesth.
65
,
399
416
(
2018
).
35.
L.
Demi
,
T.
Egan
, and
M.
Muller
, “
Lung ultrasound imaging, a technical review
,”
Appl. Sci.
10
(
2
),
462
(
2020
).
36.
G.
Soldati
,
M.
Demi
,
R.
Inchingolo
,
A.
Smargiassi
, and
L.
Demi
, “
On the physical basis of pulmonary sonographic interstitial syndrome
,”
J. Ultrasound Med.
35
(
10
),
2075
2086
(
2016
).
37.
L.
Demi
,
W.
van Hoeve
,
R. J.
van Sloun
,
G.
Soldati
, and
M.
Demi
, “
Determination of a potential quantitative measure of the state of the lung using lung ultrasound spectroscopy
,”
Sci. Rep.
7
(
1
),
12746
(
2017
).
38.
F.
Mento
and
L.
Demi
, “
On the influence of imaging parameters on lung ultrasound B-line artifacts, in vitro study
,”
J. Acoust. Soc. Am.
148
(
2
),
975
983
(
2020
).
39.
L.
Demi
,
M.
Demi
,
R.
Prediletto
, and
G.
Soldati
, “
Real-time multi-frequency ultrasound imaging for quantitative lung ultrasound—First clinical results
,”
J. Acoust. Soc. Am.
148
(
2
),
998
1006
(
2020
).
40.
F.
Mento
,
G.
Soldati
,
R.
Prediletto
,
M.
Demi
, and
L.
Demi
, “
Quantitative lung ultrasound spectroscopy applied to the diagnosis of pulmonary fibrosis: The first clinical study
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
67
(
11
),
2265
2273
(
2020
).
41.
K.
Mohanty
,
J.
Blackwell
,
T.
Egan
, and
M.
Muller
, “
Characterization of the lung parenchyma using ultrasound multiple scattering
,”
Ultrasound Med. Biol.
43
(
5
),
993
1003
(
2017
).
42.
E.
Peschiera
,
F.
Mento
, and
L.
Demi
, “
Numerical study on lung ultrasound B-line formation as a function of imaging frequency and alveolar geometries
,”
J. Acoust. Soc. Am.
149
(
4
),
2304
2311
(
2021
).
43.
G. F.
Pinton
,
G. E.
Trahey
, and
J. J.
Dahl
, “
Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
58
(
6
),
1272
1283
(
2011
).
44.
G.
Pinton
,
J.
Dahl
,
S.
Rosenzweig
, and
G.
Trahey
, “
A heterogeneous nonlinear attenuating full-wave model of ultrasound
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
56
(
3
),
474
488
(
2009
).
45.
G.
Pinton
,
J.-F.
Aubry
,
M.
Fink
, and
M.
Tanter
, “
Numerical prediction of frequency dependent 3D maps of mechanical index thresholds in ultrasonic brain therapy
,”
Med. Phys.
39
(
1
),
455
467
(
2011
).
46.
J. J.
Dahl
,
M.
Jakovljevic
,
G. F.
Pinton
, and
G. E.
Trahey
, “
Harmonic spatial coherence imaging: An ultrasonic imaging method based on backscatter coherence
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
59
(
4
),
648
659
(
2012
).
47.
G.
Pinton
,
M.
Pernot
,
E.
Bossy
,
J.-F.
Aubry
,
M.
Muller
, and
M.
Tanter
, “
Attenuation, scattering and absorption of ultrasound in the skull bone
,”
Med. Phys.
39
,
455
467
(
2011
).
48.
G. F.
Pinton
,
J.-F.
Aubry
, and
M.
Tanter
, “
Direct phase projection and transcranial focusing of ultrasound for brain therapy
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
59
(
6
),
1149
1159
(
2012
).
49.
G. F.
Pinton
,
G. E.
Trahey
, and
J. J.
Dahl
, “
Spatial coherence in human tissue: Implications for imaging and measurement
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
12
),
1976
1987
(
2014
).
50.
G. F.
Pinton
, “
Subresolution displacements in finite difference simulations of ultrasound propagation and imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
64
(
3
),
537
543
(
2017
).
51.
D.
Espíndola
,
S.
Lee
, and
G.
Pinton
, “
Shear shock waves observed in the brain
,”
Phys. Rev. Appl.
8
(
4
),
044024
(
2017
).
52.
G.
Trahey
,
N.
Bottenus
, and
G.
Pinton
, “
Beamforming methods for large aperture imaging
,”
J. Acoust. Soc. Am.
141
(
5
),
3610
3611
(
2017
).
53.
N.
Bottenus
,
G.
Pinton
, and
G.
Trahey
, “
The impact of acoustic clutter on large array abdominal imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
67
,
703
714
(
2020
).
54.
G.
Pinton
, “
Ultrasound imaging of the human body with three dimensional full-wave nonlinear acoustics. Part 1: Simulations methods
,” arXiv:2003.06934 (
2020
).
55.
G.
Pinton
, “
Ultrasound imaging with three dimensional full-wave nonlinear acoustic simulations. Part 2: Sources of image degradation in intercostal imaging
,” arXiv:2003.06927 (
2020
).
56.
S.
Chandrasekaran
,
B.
Tripathi
,
D.
Espíndola
, and
G.
Pinton
, “
Modeling ultrasound propagation in the moving brain: Applications to shear shock waves and traumatic brain injury
,” arXiv:2003.06446 (
2020
).
57.
V.
Spitzer
,
M.
Ackerman
,
A.
Scherzinger
, and
D.
Whitlock
, “
The visible human male: A technical report
,”
J. Am. Med. Inf. Assoc.
3
(
2
),
118
130
(
1996
).
58.
D. E.
Soulioti
,
F.
Santibanez
, and
G. F.
Pinton
, “
Deconstruction and reconstruction of image-degrading effects in the human abdomen using fullwave: Phase aberration, multiple reverberation, and trailing reverberation
,” arXiv:2106.13890 (
2021
).
59.
G. F.
Pinton
, “
A fullwave model of the nonlinear wave equation with multiple relaxations and relaxing perfectly matched layers for high-order numerical finite-difference solutions
,” arXiv:2106.11476 (
2021
).
60.
W.
Webb
, “
Thin-section CT of the secondary pulmonary lobule: Anatomy and the image—The 2004 Fleischner lecture
,”
Radiology
239
(
2
),
322
338
(
2006
).
61.
M.
Ochs
,
J.
Nyengaard
,
A.
Jung
,
L.
Knudsen
,
M.
Voigt
,
T.
Wahlers
,
J.
Richter
, and
H.
Gundersen
, “
The number of alveoli in the human lung
,”
Am. J. Respir. Crit. Care Med.
169
,
120
124
(
2004
).
62.
C.
Dietrich
,
G.
Mathis
,
M.
Blaivas
,
G.
Volpicelli
,
A.
Seibel
,
D.
Wastl
,
N.
Atkinson
,
X.
Cui
,
M.
Fan
, and
D.
Yi
, “
Lung B-line artefacts and their use
,”
J. Thorac. Dis.
8
(
6
),
1356
1365
(
2016
).
63.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0007273 for the video file of the propagation of sound in the areas of reduced aeration. The pressure field is shown on a compressed scale to facilitate the visualization of the low pressure signal.
64.
M. S.
Patterson
and
F. S.
Foster
, “
The improvement and quantitative assessment of B-mode images produced by an annular array/cone hybrid
,”
Ultrasonic Imaging
5
(
3
),
195
213
(
1983
).

Supplementary Material

You do not currently have access to this content.