Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.

1.
Azevedo
,
A. F.
,
Oliveira
,
A. M.
,
Dalla Rosa
,
L.
, and
Lailson-Brito
,
J.
(
2007
). “
Characteristics of whistles from resident bottlenose dolphins (Tursiops truncatus) in southern Brazil
,”
J. Acoust. Soc. Am.
121
(
3
),
2978
2983
.
2.
Bazúa-Durán
,
B.-D.
, and
Whitlow
,
W. L. A.
(
2002
). “
The whistles of Hawaiian spinner dolphins
,”
J. Acoust. Soc. Am.
112
(
3
),
3064
3072
.
3.
Chollet
,
F.
(
2017
). “
Xception: Deep learning with depthwise separable convolutions
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
July 21–26
,
Honolulu, HI
, pp.
1251
1258
.
4.
Esfahanian
,
M.
,
Zhuang
,
H.
, and
Erdol
,
N.
(
2014
). “
A new approach for classification of dolphin whistles
,” in
Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
May 4–9
,
Florence, Italy
, pp.
6038
6042
.
5.
Ferrer-i Cancho
,
R.
, and
McCowan
,
B.
(
2009
). “
A law of word meaning in dolphin whistle types
,”
Entropy
11
(
4
),
688
701
.
6.
Haut
,
J. M.
,
Paoletti
,
M. E.
,
Plaza
,
J.
,
Plaza
,
A.
, and
Li
,
J.
(
2019
). “
Hyperspectral image classification using random occlusion data augmentation
,”
IEEE Geosci. Remote. Sens. Lett.
16
(
11
),
1751
1755
.
7.
Hawkins
,
E.
, and
Gartside
,
D.
(
2008
). “
Social and behavioural characteristics of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in northern New South Wales, Australia
,”
Aust. Mammal
30
(
2
),
71
82
.
8.
Hendrycks
,
D.
, and
Gimpel
,
K.
(
2016
). “
Gaussian error linear units (GELUs)
,” arXiv:1606.08415.
9.
Howard
,
A. G.
,
Zhu
,
M.
,
Chen
,
B.
,
Kalenichenko
,
D.
,
Wang
,
W.
,
Weyand
,
T.
,
Andreetto
,
M.
, and
Adam
,
H.
(
2017
). “
Mobilenets: Efficient convolutional neural networks for mobile vision applications
,” arXiv:1704.04861.
10.
Iandola
,
F.
,
Moskewicz
,
M.
,
Karayev
,
S.
,
Girshick
,
R.
,
Darrell
,
T.
, and
Keutzer
,
K.
(
2014
). “
Densenet: Implementing efficient convnet descriptor pyramids
,” arXiv:1404.1869.
11.
Ibrahim
,
A. K.
,
Zhuang
,
H.
,
Chérubin
,
L. M.
,
Schärer-Umpierre
,
M. T.
, and
Erdol
,
N.
(
2018
). “
Automatic classification of grouper species by their sounds using deep neural networks
,”
J. Acoust. Soc. Am.
144
(
3
),
EL196
EL202
.
12.
Jiang
,
J.
,
Bu
,
L.
,
Duan
,
F.
,
Wang
,
X.
,
Liu
,
W.
,
Sun
,
Z.
, and
Li
,
C.
(
2019
). “
Whistle detection and classification for whales based on convolutional neural networks
,”
Appl. Acoust.
150
,
169
178
.
13.
Kirsebom
,
O. S.
,
Frazao
,
F.
,
Simard
,
Y.
,
Roy
,
N.
,
Matwin
,
S.
, and
Giard
,
S.
(
2020
). “
Performance of a deep neural network at detecting North Atlantic right whale upcalls
,”
J. Acoust. Soc. Am.
147
(
4
),
2636
2646
.
14.
Koluguri
,
N. R.
,
Li
,
J.
,
Lavrukhin
,
V.
, and
Ginsburg
,
B.
(
2020
). “
SpeakerNet: 1D depth-wise separable convolutional network for text-independent speaker recognition and verification
,” arXiv:2010.12653.
15.
La Manna
,
G.
,
Rako-Gospić
,
N.
,
Sarà
,
G.
,
Gatti
,
F.
,
Bonizzoni
,
S.
, and
Ceccherelli
,
G.
(
2020
). “
Whistle variation in Mediterranean common bottlenose dolphin: The role of geographical, anthropogenic, social, and behavioral factors
,”
Ecol. Evol.
10
(
4
),
1971
1987
.
16.
Lopez-Marulanda
,
J.
,
Rödel
,
H. G.
,
Colpaert
,
N.
,
Vanderheul
,
S.
,
Adam
,
O.
, and
Delfour
,
F.
(
2020
). “
Contexts of emission of non-signature whistles in bottlenose dolphins (Tursiops truncatus) under human care
,”
Behav. Process.
181
,
104255
.
17.
Morisaka
,
T.
,
Shinohara
,
M.
,
Nakahara
,
F.
, and
Akamatsu
,
T.
(
2005
). “
Effects of ambient noise on the whistles of Indo-Pacific bottlenose dolphin populations
,”
J. Mammal
86
(
3
),
541
546
.
18.
Mouy
,
X.
,
Bahoura
,
M.
, and
Simard
,
Y.
(
2009
). “
Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence
,”
J. Acoust. Soc. Am.
126
(
6
),
2918
2928
.
19.
Oswald
,
J. N.
,
Rankin
,
S.
,
Barlow
,
J.
, and
Lammers
,
M. O.
(
2007
). “
A tool for real-time acoustic species identification of delphinid whistles
,”
J. Acoust. Soc. Am.
122
(
1
),
587
595
.
20.
Padovese
,
B.
,
Frazao
,
F.
,
Kirsebom
,
O. S.
, and
Matwin
,
S.
(
2021
). “
Data augmentation for the classification of North Atlantic right whales upcalls
,”
J. Acoust. Soc. Am.
149
(
4
),
2520
2530
.
21.
Park
,
D. S.
,
Chan
,
W.
,
Zhang
,
Y.
,
Chiu
,
C.-C.
,
Zoph
,
B.
,
Cubuk
,
E. D.
, and
Le
,
Q. V.
(
2019
). “
Specaugment: A simple data augmentation method for automatic speech recognition
,” arXiv:1904.08779.
22.
Rasmussen
,
J. H.
, and
Širović
,
A.
(
2021
). “
Automatic detection and classification of baleen whale social calls using convolutional neural networks
,”
J. Acoust. Soc. Am.
149
(
5
),
3635
3644
.
23.
Roch
,
M. A.
,
Scott Brandes
,
T.
,
Patel
,
B.
,
Barkley
,
Y.
,
Baumann-Pickering
,
S.
, and
Soldevilla
,
M. S.
(
2011
). “
Automated extraction of odontocete whistle contours
,”
J. Acoust. Soc. Am.
130
(
4
),
2212
2223
.
24.
Salamon
,
J.
, and
Bello
,
J. P.
(
2017
). “
Deep convolutional neural networks and data augmentation for environmental sound classification
,”
IEEE Signal Process. Lett.
24
(
3
),
279
283
.
25.
Serra
,
O.
,
Martins
,
F.
, and
Padovese
,
L. R.
(
2020
). “
Active contour-based detection of estuarine dolphin whistles in spectrogram images
,”
Ecol. Inf.
55
,
101036
.
26.
Simpson
,
S. D.
, and
Miller
,
C. E.
(
2020
). “
Identification of key discriminating variables between spinner dolphin (Stenella longirostris) whistle types
,”
J. Acoust. Soc. Am.
148
(
3
),
1136
1144
.
27.
Sousa-Lima
,
R. S.
,
Fernandes
,
D. P.
,
Norris
,
T. F.
, and
Oswald
,
J. N.
(
2013
). “
A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals: 2013 state-of-the-industry
,” in
Proceedings of the 2013 IEEE/OES Acoustics in Underwater Geosciences Symposium
,
July 24–26
,
Rio de Janeiro, Brazil
, pp.
1
9
.
28.
Szegedy
,
C.
,
Ioffe
,
S.
,
Vanhoucke
,
V.
, and
Alemi
,
A.
(
2017
). “
Inception-v4, inception-resnet and the impact of residual connections on learning
,” in
Proceedings of the AAAI Conference on Artificial Intelligence
,
February 4–9
,
San Francisco, CA
.
29.
Szegedy
,
C.
,
Liu
,
W.
,
Jia
,
Y.
,
Sermanet
,
P.
,
Reed
,
S.
,
Anguelov
,
D.
,
Erhan
,
D.
,
Vanhoucke
,
V.
, and
Rabinovich
,
A.
(
2015
). “
Going deeper with convolutions
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
June 7–12
,
Boston, MA
, pp.
1
9
.
30.
Takahashi
,
R.
,
Matsubara
,
T.
, and
Uehara
,
K.
(
2019
). “
Data augmentation using random image cropping and patching for deep CNNs
,”
IEEE Trans. Circuits Syst. Video Technol.
30
(
9
),
2917
2931
.
31.
Wang
,
C.
,
Zhang
,
L.
,
Wei
,
W.
, and
Zhang
,
Y.
(
2019
). “
Hyperspectral image classification with data augmentation and classifier fusion
,”
IEEE Geosci. Remote. Sens. Lett.
17
(
8
),
1420
1424
.
32.
Ward
,
R.
,
Parnum
,
I.
,
Erbe
,
C.
, and
Salgado-Kent
,
C.
(
2016
). “
Whistle characteristics of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Fremantle Inner Harbour, Western Australia
,”
Acoust. Aust.
44
(
1
),
159
169
.
33.
Yang
,
W.
,
Luo
,
W.
, and
Zhang
,
Y.
(
2020
). “
Classification of odontocete echolocation clicks using convolutional neural network
,”
J. Acoust. Soc. Am.
147
(
1
),
49
55
.
34.
Zhong
,
M.
,
Castellote
,
M.
,
Dodhia
,
R.
,
Lavista Ferres
,
J.
,
Keogh
,
M.
, and
Brewer
,
A.
(
2020
). “
Beluga whale acoustic signal classification using deep learning neural network models
,”
J. Acoust. Soc. Am.
147
(
3
),
1834
1841
.
35.
Zimmer
,
W. M.
(
2011
).
Passive Acoustic Monitoring of Cetaceans
(
Cambridge University Press
,
Cambridge, UK
).
You do not currently have access to this content.