Acoustic line transect surveys are often used in combination with visual methods to estimate the abundance of marine mammal populations. These surveys typically use towed linear hydrophone arrays and estimate the time differences of arrival (TDOAs) of the signal of interest between the pairs of hydrophones. The signal source TDOAs or bearings are then tracked through time to estimate the animal position, often manually. The process of estimating TDOAs from data and tracking them through time can be especially challenging in the presence of multiple acoustically active sources, missed detections, and clutter (false TDOAs). This study proposes a multi-target tracking method to automate TDOA tracking. The problem formulation is based on the Gaussian mixture probability hypothesis density filter and includes multiple sources, source appearance and disappearance, missed detections, and false alarms. It is shown that by using an extended measurement model and combining measurements from broadband echolocation clicks and narrowband whistles, more information can be extracted from the acoustic encounters. The method is demonstrated on false killer whale (Pseudorca crassidens) recordings from Hawaiian waters.

1.
A. L.
Bradford
,
K. A.
Forney
,
E. M.
Oleson
, and
J.
Barlow
, “
Accounting for subgroup structure in line-transect abundance estimates of false killer whales (Pseudorca crassidens) in Hawaiian waters
,”
PloS One
9
(
2
),
e90464
(
2014
).
2.
A.
Thode
, “
Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array
,”
J. Acoust. Soc. Am.
116
(
1
),
245
253
(
2004
).
3.
A.
Thode
, “
Three-dimensional passive acoustic tracking of sperm whales (Physeter macrocephalus) in ray-refracting environments
,”
J. Acoust. Soc. Am.
118
(
6
),
3575
3584
(
2005
).
4.
A. I.
DeAngelis
,
R.
Valtierra
,
S. M.
Van Parijs
, and
D.
Cholewiak
, “
Using multipath reflections to obtain dive depths of beaked whales from a towed hydrophone array
,”
J. Acoust. Soc. Am.
142
(
2
),
1078
1087
(
2017
).
5.
R. W.
Baird
, “
A review of false killer whales in Hawaiian waters: Biology, status, and risk factors
,”
Technical Report for the U.S. Marine Mammal Commission
, Order No. E40475499,
Cascadia Research Collective
, Olympia, WA (
2009
).
6.
E. M.
Oleson
,
C. H.
Boggs
,
K. A.
Forney
,
M. B.
Hanson
,
D. R.
Kobayashi
,
B. L.
Taylor
,
P. R.
Wade
, and
G. M.
Ylitalo
, “
Status review of Hawaiian insular false killer whales (Pseudorca crassidens) under the endangered species act
,”
Technical Memorandum NOAA-TM-NMFS-PIFSC-22
,
U.S. Dept. Commerce
, NOAA,
2010
).
7.
W. W.
Au
,
J. L.
Pawloski
,
P. E.
Nachtigall
,
M.
Blonz
, and
R. C.
Gisner
, “
Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens)
,”
J. Acoust. Soc. Am.
98
(
1
),
51
59
(
1995
).
8.
S.
Baumann-Pickering
,
A. E.
Simonis
,
E. M.
Oleson
,
R. W.
Baird
,
M. A.
Roch
, and
S. M.
Wiggins
, “
False killer whale and short-finned pilot whale acoustic identification
,”
Endangered Species Res.
28
(
2
),
97
108
(
2015
).
9.
J. N.
Oswald
,
S.
Rankin
,
J.
Barlow
, and
M. O.
Lammers
, “
A tool for real-time acoustic species identification of delphinid whistles
,”
J. Acoust. Soc. Am.
122
(
1
),
587
595
(
2007
).
10.
Y. M.
Barkley
,
E. M.
Oleson
,
J. N.
Oswald
, and
E. C.
Franklin
, “
Whistle classification of sympatric false killer whale populations in Hawaiian waters yields low accuracy rates
,”
Front. Mar. Sci.
6
,
1
15
(
2019
).
11.
E.
Henderson
,
J.
Hildebrand
,
M.
Smith
, and
E.
Falcone
, “
The behavioral context of common dolphin (Delphinus sp.) vocalizations
,”
Mar. Mammal Sci.
28
(
3
),
439
460
(
2012
).
12.
S. M.
Wiggins
,
M. A.
McDonald
, and
J. A.
Hildebrand
, “
Beaked whale and dolphin tracking using a multichannel autonomous acoustic recorder
,”
J. Acoust. Soc. Am.
131
(
1
),
156
163
(
2012
).
13.
M.
Gassmann
,
E.
Elizabeth Henderson
,
S. M.
Wiggins
,
M. A.
Roch
, and
J. A.
Hildebrand
, “
Offshore killer whale tracking using multiple hydrophone arrays
,”
J. Acoust. Soc. Am.
134
(
5
),
3513
3521
(
2013
).
14.
C. W.
Clark
and
W. T.
Ellison
, “
Calibration and comparison of the acoustic location methods used during the spring migration of the bowhead whale, Balaena mysticetus, off Pt. Barrow, Alaska, 1984–1993
,”
J. Acoust. Soc. Am.
107
(
6
),
3509
3517
(
2000
).
15.
C. O.
Tiemann
,
M. B.
Porter
, and
L. N.
Frazer
, “
Localization of marine mammals near hawaii using an acoustic propagation model
,”
J. Acoust. Soc. Am.
115
(
6
),
2834
2843
(
2004
).
16.
S. M.
Wiggins
,
K. E.
Frasier
,
E.
Elizabeth Henderson
, and
J. A.
Hildebrand
, “
Tracking dolphin whistles using an autonomous acoustic recorder array
,”
J. Acoust. Soc. Am.
133
(
6
),
3813
3818
(
2013
).
17.
E.-M.
Nosal
, “
Methods for tracking multiple marine mammals with wide-baseline passive acoustic arrays
,”
J. Acoust. Soc. Am.
134
(
3
),
2383
2392
(
2013
).
18.
G. C.
Carter
, “
Coherence and time delay estimation
,”
Proc. IEEE
75
(
2
),
236
255
(
1987
).
19.
P. R.
White
,
T. G.
Leighton
,
D. C.
Finfer
,
C.
Powles
, and
O. N.
Baumann
, “
Localisation of sperm whales using bottom-mounted sensors
,”
Appl. Acoust.
67
(
11-12
),
1074
1090
(
2006
).
20.
P. M.
Baggenstoss
, “
An algorithm for the localization of multiple interfering sperm whales using multi-sensor time difference of arrival
,”
J. Acoust. Soc. Am.
130
(
1
),
102
112
(
2011
).
21.
T. A.
Helble
,
G. R.
Ierley
,
G. L.
D'Spain
, and
S. W.
Martin
, “
Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility
,”
J. Acoust. Soc. Am.
137
(
1
),
11
21
(
2015
).
22.
B.
Miller
and
S.
Dawson
, “
A large-aperture low-cost hydrophone array for tracking whales from small boats
,”
J. Acoust. Soc. Am.
126
(
5
),
2248
2256
(
2009
).
23.
P. M.
Baggenstoss
, “
A multi-hypothesis tracker for clicking whales
,”
J. Acoust. Soc. Am.
137
(
5
),
2552
2562
(
2015
).
24.
R. P.
Mahler
,
Statistical Multisource-Multitarget Information Fusion
(
Artech House Inc
.,
Norwood, MA
(
2007
), p.
856
.
25.
W.-K.
Ma
,
B.-N.
Vo
,
S. S.
Singh
, and
A.
Baddeley
, “
Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach
,”
IEEE Trans. Sign. Process.
54
(
9
),
3291
3304
(
2006
).
26.
R.
Mahler
, “
A theoretical foundation for the Stein-Winter ‘Probability Hypothesis Density (PHD)’ multitarget tracking approach
,” in
Proceedings of the 2000 MSS National Symposium on Sensor and Data Fusion
, DTIC Document, San Antonio, Texas (
2000
), pp.
99
117
.
27.
R. P.
Mahler
,
Advances in Statistical Multisource-Multitarget Information Fusion
(
Artech House Inc
.,
Norwood, MA
,
2014
), p.
1128
.
28.
D. E.
Clark
,
I.
Ruiz
,
Y.
Petillot
, and
J.
Bell
, “
Particle PHD filter multiple target tracking in sonar image
,”
IEEE Trans. Aerosp. Electron. Syst.
1
(
43
),
409
416
(
2007
).
29.
A.-A.
Saucan
,
T.
Chonavel
,
C.
Sintes
, and
J.-M.
Le Caillec
, “
CPHD-DOA tracking of multiple extended sonar targets in impulsive environments
,”
IEEE Trans. Sign. Process.
64
(
5
),
1147
1160
(
2016
).
30.
E.
Maggio
,
M.
Taj
, and
A.
Cavallaro
, “
Efficient multitarget visual tracking using random finite sets
,”
IEEE Trans. Circuits Syst. Video Technol.
18
(
8
),
1016
1027
(
2008
).
31.
C.
Evers
,
A. H.
Moore
,
P. A.
Naylor
,
J.
Sheaffer
, and
B.
Rafaely
, “
Bearing-only acoustic tracking of moving speakers for robot audition
,” in
2015 IEEE International Conference on Digital Signal Processing (DSP)
,
IEEE
, Singapore (
2015
), pp.
1206
1210
.
32.
P.
Gruden
and
P. R.
White
, “
Automated tracking of dolphin whistles using Gaussian mixture probability hypothesis density filters
,”
J. Acoust. Soc. Am.
140
(
3
),
1981
1991
(
2016
).
33.
P.
Gruden
and
P. R.
White
, “
Automated extraction of dolphin whistles—A sequential Monte Carlo probability hypothesis density approach
,”
J. Acoust. Soc. Am.
148
(
5
),
3014
3026
(
2020
).
34.
D.
Clark
,
B.
Ristic
, and
B.-N.
Vo
, “
PHD filtering with target amplitude feature
,” in
2008 11th International Conference on Information Fusion
,
IEEE
,
Cologne, Germany
(
2008
), pp.
1
7
.
35.
D.
Clark
,
B.
Ristic
,
B.-N.
Vo
, and
B. T.
Vo
, “
Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR
,”
IEEE Trans. Sign. Process.
58
(
1
),
26
37
(
2010
).
36.
B.
Ristic
,
D.
Clark
,
B.-N.
Vo
, and
B.-T.
Vo
, “
Adaptive target birth intensity for PHD and CPHD filters
,”
IEEE Trans. Aerosp. Electron. Syst.
48
(
2
),
1656
1668
(
2012
).
37.
A.
Weiss
and
E.
Weinstein
, “
Fundamental limitations in passive time delay estimation—Part I: Narrow-band systems
,”
IEEE Trans. Acoust. Speech Sign. Process.
31
(
2
),
472
486
(
1983
).
38.
C.
Knapp
and
G.
Carter
, “
The generalized correlation method for estimation of time delay
,”
IEEE Trans. Acoust. Speech Sig. Process.
24
(
4
),
320
327
(
1976
).
39.
K.
Scarbrough
,
N.
Ahmed
, and
G. C.
Carter
, “
Comparison of two methods for time delay estimation of sinusoids
,”
Proc. IEEE
70
(
1
),
90
92
(
1982
).
40.
D.
Gillespie
,
M.
Caillat
,
J.
Gordon
, and
P. R.
White
, “
Automatic detection and classification of odontocete whistles
,”
J. Acoust. Soc. Am.
134
(
3
),
2427
2437
(
2013
).
41.
The click removal sample code is available at https://github.com/PinaGruden/Click_removal_sample_code (Last viewed June 14,
2021
).
42.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
, Fourth ed. (
Wiley
,
Hoboken, NJ
,
2010
), p.
604
.
43.
B.-N.
Vo
and
W.-K.
Ma
, “
The Gaussian mixture probability hypothesis density filter
,”
IEEE Trans. Sign. Process.
54
(
11
),
4091
4104
(
2006
).
44.
S. M.
Bozic
,
Digital and Kalman Filtering
(
Edward Arnold Ltd
.,
London, UK
,
1979
), p.
157
.
45.
K.
Panta
,
D. E.
Clark
, and
B.-N.
Vo
, “
Data association and track management for the Gaussian mixture probability hypothesis density filter
,”
IEEE Trans. Aerosp. Electron. Syst.
45
(
3
),
1003
1016
(
2009
).
46.
See supplementary material at https://www.scitation.org/doi/suppl/10.1121/10.0006780 for the derivation of the PHD filter, which incorporates the amplitude information and updates persistent and newborn targets separately; measurements, annotated, and interpolated data for scenarios 1–4; and additional figures of the GM-PHD-S tracking performance, respectively.
47.
X. R.
Li
and
V. P.
Jilkov
, “
Survey of maneuvering target tracking. Part I: Dynamic models
,”
IEEE Trans. Aerosp. Electron. Syst.
39
(
4
),
1333
1364
(
2003
).
48.
Y.
Bar-Shalom
,
X. R.
Li
, and
T.
Kirubarajan
,
Estimation with Applications to Tracking and Navigation
(
Wiley
,
New York
,
2001
), p.
558
.
49.
D.
Lerro
and
Y.
Bar-Shalom
, “
Automated tracking with target amplitude information
,” in
1990 American Control Conference
,
IEEE
,
San Diego, CA
(
1990
), pp.
2875
2880
.
50.
A.
Quazi
, “
An overview on the time delay estimate in active and passive systems for target localization
,”
IEEE Trans. Acoust. Speech Sign. Process.
29
(
3
),
527
533
(
1981
).
51.
A.
von Benda-Beckmann
,
S.
Beerens
, and
S.
Van Ijsselmuide
, “
Effect of towed array stability on instantaneous localization of marine mammals
,”
J. Acoust. Soc. Am.
134
(
3
),
2409
2417
(
2013
).
52.
D. A.
McCallum
,
A Conceptual Guide to Detection Probability for Point Counts and Other Count-Based Survey Methods
(
U.S. Dept. of Agriculture, Forest Service
,
Pacific Southwest Research Station, Asilomar, CA
,
2005
).
53.
C. M.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer Science nd Business Media
,
New York
,
2006
), p.
738
.
54.
M. A.
Roch
,
T. S.
Brandes
,
B.
Patel
,
Y.
Barkley
,
S.
Baumann-Pickering
, and
M. S.
Soldevilla
, “
Automated extraction of odontocete whistle contours
,”
J. Acoust. Soc. Am.
130
(
4
),
2212
2223
(
2011
).
55.
K. M.
Yano
,
E. M.
Oleson
,
J. L.
Keating
,
L. T.
Ballance
,
M. C.
Hill
,
A. L.
Bradford
,
A. N.
Allen
,
T. W.
Joyce
,
J. E.
Moore
, and
A.
Henry
, “
Cetacean and seabird data collected during the Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS), July–December 2017
,”
Technical Memorandum NOAA-TM-NMFS-PIFSC-72
,
U.S. Dept. of Commerce, NOAA
(
2018
).
56.
P.
Li
,
X.
Liua
,
K. J.
Palmer
,
E.
Fleishman
,
D.
Gillespie
,
E.-M.
Nosal
,
Y.
Shiu
,
H.
Klinck
,
D.
Cholewiak
,
T.
Helble
, and
M. A.
Roch
, “
Learning deep models from synthetic data for extracting dolphin whistle contours
,” in
2020 International Joint Conference on Neural Networks (IJCNN)
,
IEEE
, Glasgow, UK (
2020
), pp.
1
10
.
57.
B.
Ristic
,
B.-N.
Vo
,
D.
Clark
, and
B.-T.
Vo
, “
A metric for performance evaluation of multi-target tracking algorithms
,”
IEEE Trans. Sign. Process.
59
(
7
),
3452
3457
(
2011
).
58.
R. P.
Mahler
,
B.-T.
Vo
, and
B.-N.
Vo
, “
CPHD filtering with unknown clutter rate and detection profile
,”
IEEE Trans. Sign. Process.
59
(
8
),
3497
3513
(
2011
).
59.
A. L.
Bradford
,
E. A.
Becker
,
E. M.
Oleson
,
K. A.
Forney
,
J. E.
Moore
, and
J.
Barlow
, “
Abundance estimates of false killer whales in Hawaiian waters and the broader central Pacific
,”
Technical Memorandum NOAA-TM-NMFS-PIFSC-104
,
U.S. Dept. of Commerce, NOAA
(
2020
).
60.
Y.
Barkley
(personal communication, 2020).

Supplementary Material

You do not currently have access to this content.